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Radiation and Scattering from Printed Antennas on Cylindrically Conformal
Platforms

PROJECT SUMMARY

The goal of this project is to develop suitable methods and software for the analysis of
antennas on cylindrical coated and uncoated platforms. Specifically, the finite element-

boundary integral and finite element-ABC methods were employed very successfully for
this purpose and associated software were developed for the analysis and design of
wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This is the
first work which led to the successful implementation of analysis software for such

antennas, and several significant developments played a major role in this respect. Among
them, axe the efficient implementation of the 3D Green's function for a metallic cylinder,
the incorporation of the fast Fourier transform in computing the matrix-vector products
executed in the solver of the finite element-boundary integral system and the development

of a new absorbing boundary condition for terminating the finite element mesh on
cylindrical surfaces. Of importance to this project was also the antenna measured data
provided to us by Mr. Randy Sliva at the Naval Air Warfare Center, China Lake, CA.
Since there is a dearth of reference data in the literature, the patterns provided by Mr. Sliva

were essential in validating (to the extent possible) the antenna analysis part of the new
formulation and associated software.

As can be realized, the emphasis of our work has so far been on the analysis of uncoated
cylindrical platforms. Although of interest to this project was also the simulation of coated
platforms, it was necessary to first complete the analysis of antenna on metallic platforms

before proceeding with the characterization of patch antennas on the more complex coated
configurations. Also, it was necessary to generate reference data for such configurations.
Toward this purpose, a new finite element-boundary integral code is near completion for

the analysis of fiat patches on coated platforms. In this implementation, much effort was
devoted to developing an efficient algorithm to evaluate the coated platform Green's
function. The already completed and more versatile finite element-ABC code for
cylindrically conformal platforms is already capable of simulating patch antennas on coated
platforms. However, its validation will not be completed until the results of this code (and

associated formulation) are compared with data based on the reference code and possibly
measured data to be collected in the coming months. It should be mentioned that the
implementation of the reference was delayed because of two dimensional reference code
was fhst developed as described in the University of Michigan Radiation Laboratory report
030601-2-T.

This report contains three main section and two appendices

MAIN SECTIONS:

1. Scattering by Cayity-Backed Antennas on a Circular Cylinder
This section describes the finite element-boundary integral method and its

implementation for antennas on cylindrical platforms. The Green's function expressions for
large and small radii of curvature are also presented in this section. However, the specific
details of the resulting system solution in conjunction with the FFr are given in the U-M
Radiation Laboratory report 030601-1-T. Of most importance in this section is the
presentation of scattering patterns for several patch antenna configurations illustrating the

curvature effects. From these results we conclude that patch arrays on wraparound



substratesexhibitmuchhigherRCSwhencomparedto thesamearrayof patches
.configured in individual cavities. Also, curves patches are typically of lower Q than flat

patches of the same size.

" 2. Radiation by Cylindrical Conformal Antennas
This section addresses the performance of patch radiators on curved platforms. It

includes comparisons of measured and calculated antenna patterns for patch arrays. These
results demonstrate the effectiveness of the first ever robust formulation for the analysis of

non-planar conformal patch antennas. From the results, it is shown that careful placement
of the radiator patches is required to suppress back lobes in the radiation pattern. An

important future task is, of course, the characterization of different antenna configurations.
We can now begin to consider coupling issues and the effect of treatment and curvature on
the input impedance and antenna RCS. We intend to submit an more detailed report on this
subject in the very near future.

3. Finite El_m_:.nt-Boundary Intem'al Code Manual
This section serves as a users manual for the subject code. Also a short description

of the code's operation is included. The effective use of this code should provide the user

with a good tool for the analysis and design of patch antennas on cylindrical platforms.

APPENDICES

Av.maai2d.
This appendix gives preliminary results based on the finite element-

absorbing boundary condition(FE-ABC) formulation code. This code is more versatile
than the finite element-boundary integral code discussed above. It potentially allows the
modeling of composite platforms and surface treatments. Also, this formulation, which is
based on a new class of conformal ABCs, can be generalized to allow modeling of doubly
conformal platforms. Additional validation and development of this code is necessary
before it can be transferred to other users.

Alnmdi2 
This Appendix describes the f'mite element-boundary integral(FE-BI) formulation

for antennas recessed in a coated ground plane. The emphasis on a new efficient evaluation
of the Sommerfeld-type Green's function for the coated grounded plane and its

incorporation into our existing FE-BI code. The intent is to use this code to generate
reference data for validating the more versatile FE-ABC code and associated formulation.
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Scattering by Cavity-backed Antennas on

Circular Cylinder

&

Leo C. Kempel and John L. Volakis

Radiation Laboratory

1301 Beal Ave.

Ann Arbor, MI 48109-2122

November 15, 1993

Abstract

Conformal arrays are popular antennas for aircraft, spacecraft and

land vehicle platforms due to their inherent low weight and drag prop-

erties. However, to date there has been a dearth of rigorous analyt-

ical or numerical solutions to aid the designer. In fact, it has been

common practice to use limited measurements and planar approxi-

mations in designing such non-planar antennas. In this paper, we

extend the finite element-boundary integral method to scattering by

cavity-backed structures in an infinite, metallic cylinder. In particular,

we discuss the formulation specifics such as weight functions, dyadic

Green's function, implementation details and particular difficulties in-

herent to cylindrical structures. Special care is taken to ensure that

the resulting computer program has low memory demand and mini-

mal computational requirements_ Scattering results are presented and

validated as much as possible.



1 Introduction

Conformal antenna arrays are attractive for aircraft, spacecraft, and land

vehicle applications since these antenna systems have low weight, low drag,

flexibility, and cost advantages over conventional protruding antennas. The

majority of previous studies°peri_ainingto-non-planar c0nformal antennas

has been conducted experimentally due to a dearth of rigorous analysis tech-

niques. Traditional rigorous techniques involve an integral equation and are

limited in terms of radius of curvature and structural complexity. Some ap-

proximate methods have been considered but these are restricted in accuracy

and element shape.

Recently, the finite element-boundary integral (FEM-BI) method was

successfully employed for the analysis of large cavity-backed planar arrays

[1]. The resulting system is spar_se due to the local nature of the finite ele-

ment method, whereas the boundary integral sub-matrix is fully populated.

However, by resorting to an iterative solver such as the Biconjugate Gradi-

ent (BiCG) method, the boundary integral sub-system may be cast in circu-

lant form allowing use of the Fast Fourier Transform (FFT) in performing

the matrix-vect0r products. This BiCG'FFT solution scheme ensures O(N)

mem0rydemand for_the entire=FEM'_systemand minlmizes the eomputa'

tional requirements,

In this paper, the FEM-BI formulation is extended to scattering by aper-

ture antennas conformal to a cylindrical metallic surface. In contrast to

the planar aperture array, the implementation of the cylindrically conformal

array requires shell-shaped elements rather than bricks, and the required ex-

ternal Green's function must satisfy the boundary conditions on the surface

of the cylinder. In its exact form, this Green's function is an infinite series

which imposes Unacceptable computational burdens on the method. How-

ever, for large radius cylinders, a=suitable asymptotic formula is available

and herein used for an efficient evaluation of the Green's function. In ad-

dition, the resulting BI system is again cast in circulant form to ensure an

O(N) memory demand and to take advantage of the FFT's efficiency when

carrying out the matrix-vector product.

A primary difficulty in studying cavity-backed antennas mounted on curved

surfaces is the lack of reference data. In this paper, scattering calculations

based on the FEM-BI method are compared with data based on different

techniques. Although such validation is necessarily limited, it provides con-

2



fidence in the formulation's accuracyso that this approach may be used in
extending the available referencedata.

2 FEM-BI for Circular Cylinders

In this section, the FEM-BI formulation is developed for cavities recessed

in an infinite metallic cylinder, having walls which coincide with constant

p-,¢- or z-surfaces (see figure 1). As usual, the finite element formulation

permits substantial modeling flexibility, including cavity inhomogeneities,

lumped loads, super/substrate antenna configurations, or microstrip line and

so on.

The FEM-BI approach possesses both low memory and computational

demand when implemented with a BiCG-FFT solver. Although the system

of equations associated with the FEM formulation is sparse, the boundary

integral sub-matrix is fully populated. However, if the aperture mesh is a

uniform grid, the BiCG-FFT solver may be employed for that portion of

the system thus retaining O(N) memory demand for the entire system. In

addition, the solver require low computational demand since both sparse

matrix-vector products and discrete convolutSons using FFTs require only

O(NlogN) operations per iteration.

The FEM-BI formulation begins with the weak form of the vector wave

equation followed by specification of appropriate vector shape functions and

dyadic Green's function. The resulting FEM-BI equations are then used to

solve for the total electric fields within the cavity and on the aperture (see

for example Volakis et al. [2]). For the specific configuration at hand, the

weak form of the wave equation can be written as

Iv,{ V x lTVj(p'¢'z)'V × I_i(p'¢'z)la_(p,¢,z)

-k2oer(p,¢,z)I_j(p,¢,z) • l_i(p,¢,z)}pdpdCdz

_2(a, ¢, :) × )(a,C',z'). I_._(a, ¢', z')] de' dz'dCdz = f_"' ÷ f._' (1)

In this, l_i are vector basis functions with support over the volume V/which is

3
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Figure 1: Illustration of a typical cavity-backed antenna situated on a metal-

lic cylinder and the associated coordinate system.
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associatedwith the i th degree of freedom, and in a similar fashion, S, and S 3

represent aperture surfaces associated with the i th and jth degrees of freedom,

respectively. The appropriate dyadic Green's function is denoted by G2 and it

has convolutional (_ = d_-_', Y. = z- z') form when evaluated on the surface

of the cylinder, p = a. The unprimed coordinates represent the test point

while the primed ones denote the source point. The free-space propagation

constant is given by k0 = 2,_xs,where ,ko is the free-space wavelength. The

cavity is filled with an inhomogeneous material having relative constitutive

properties er and #_. The function _,,(i)6_(j) is the product of two Kronecker

delta functions. Hence, it identifies which pairs of unknowns belong to the

aperture and accordingly contribute to the boundary integral sub-matrix.

The FEM-BI equation (1) may be rewritten in matrix form as

(2)

where the entries of [.,4] are due to the FEM portion of the formulation and

[_7] is the boundary integral sub-matrix. In :(2), Ej 'p and Ej"t denote degrees

of freedom associated with the aperture and interior fields, respectively. In

this, f/_,t are functions of the external excitation and will be discussed later

in the paper.

An important factor in choosing the finite elements for gridding the cav-

ity is the element's suitability for satisfying the mathematical requirements

of the formulation as well as the physical features of the antenna system.

Traditional node-based finite elements associate the degrees of freedom with

the nodal fields and have proven unsatisfactory for three-dimensional electro-

magnetics applications since they do not correctly represent the null space

of the curl operator and hence spurious modes are generated [3, 4]. In con-

trast, edge-based elements correctly model the curl operator and therefore

the electromagnetic fields. In addition, edge-based elements avoid explicit

specification of the fields at corners where edge conditions may require a sin-

gularity. Jin and Volakis [6] presented edge-based brick elements which are

convenient for rectangular-type structures and cavities. For cavities residing

in a circular cylinder, shell elements are the natural choice.

Cylindrical shell elements possess both geometrical fidelity and simplicity

for cylindrical-rectangular cavities. Figure 2 illustrates a typical shell element

which has eight nodes connected by twelve edges: four edges aligned along

5



z

z L

Zb

d pa --_

\ ®

x

v y

Figure 2: Cylindrical shell element.
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each of the three orthogonal directions of the cylindrical coordinate system.

Each element is associated with twelve vector shape functions given by

_,_(p,¢,z) = ff_,(p,¢, z; .,¢,, z,, +), _,3(p,¢,z)= nS(p, o, :; -,¢,, :,, -)
_56(p,¢,z) = _(p, ¢, z;., _r, zb,-), _8,(p,¢, z) = _(p,'"0, :;., ¢,,_, +)

_,(p,¢,_) = ¢_(p, ¢,z; p_,.,:,, +), _3(p,¢,z)= _,(p, ¢,_;po,., :,, -)
_8(p,¢,_) = _(p, ¢,z;p_,., z_,-), _,(p,¢,z)= _(p, ¢, z;p_,., _, +)

l_ls(p,¢,z) = [_(p,¢,z;pb,¢,.,', +), I_26(p,¢,z)= l_(p,¢,z;pa,¢,.,',--)

_(p,¢,z) = _(p,¢,z;p_,¢..,-), _(p,¢,_) = _(p,_,z;po,¢,,.,+)
(3)

where l_lk is associated with the edge which is delimited by local nodes (1,k)

as shown in figure 2. As seen from (3), three fundamental vector weight

functions are required for the complete representation of the shell element.

They are

_,(p,_,_;_,_,_,_) = _,_(_-_)(_-_)_
c_h p

= _(,-p)(_- _)_

= _(.- _)(_- _)_ (4)

where the element parameters (p_, pb, _bl, _b_, zb, zt) are shown in figure 2, t =

p_-p_, c_ = _b_-St and h = zt-z_. The _--term which appears in the
P

definition of the _-directed weight _) is essential in satisfying the divergence

free requirement, i.e. so that _7. W_ = 0 _. Note that as the radius of the

cylinder becomes large, the curvature of these elements decreases, resulting

in weight functions which are functionally similar to the bricks presented

ff'j(p, ¢, z) will only satisfy this requirement within the volume of the element. These
weighting functions introduce artificial charges on the faces of the element and are not di-
vergeneeless at element interfaces. This is allowable since these elements do not guarantee
normal field continuity across the element faces.



by Jin and Volakis [6]. Having specified the vector basis functions, we may

proceed to develop the matrix entries for the system (2).

The FEM-BI system is composed of two parts: a sparse FEM matrix and

a fully populated BI sub-matrix as shown in (2). The FEM matrix entries

are represented by

A, 3 l (l)ij .2 .(2)ij- Iot - _Coe,.l_t (5)
jut

where constant material properties have been assumed within each element.

The subscripts (i,j) refer to the row and column of the matrix entry and

correspond to the test and source edges, respectively. The auxiliary functions

v × ff ,(p, ¢, z; j, •

v × l,

lf/,(p, ¢,z; "I"Pt(p,¢,z; ¢,,g'i,gi)pdpdCdz (6)

are identically zero unless both test and source edges share at least one el-

ement in common, resulting in a highly sparse system. Physically, such a

system is a consequence of the locality property inherent in a partial differ-

ential equation formulation. In (6), the direction of the source and test edges

are represented by (s, t) E {p, ¢, z}, respectively. Since the edges of the mesh

are aligned along three orthogonal directions, only six combinations of (s, t)

are required for i(1) and only three such combinations for I (2) and all of these

are evaluated in Appendix A. Since (6) is symmetric with respect to source

and test edges, the _M matrix will also be symmetric.

A lumped impedance post may be included in the formulation by adding a

term to (1) and equivalently to (5); surface or sub-surface metallization layers

may also be modeled. Radially oriented lumped loads are approximated

in the FEM-BI formulation by a filamentary load located at (eL, ZL) [2].

Such posts have length l, cross-sectional area s and impedance ZL. The

contribution to [A] is given by

A,.i = 3koZo_-[L"l fv 8(¢--¢L)8(Z--p ZL)W_(p,¢,z)Wj(p,¢,z)pdpdCdz(7 )

which may be readily evaluated in closed form. In addition, infinitesimally

thin metallization layers may be represented by simply fixing a priori the

8



weight coefficientsto zero for weights associatedwith edgeswhich are tan-
gential to the metal. This is a consequenceof using a total electric field
formulation. The symmetry and sparsity of the FEM system [.A] is main-
tained after the addition of theseloadswhile the BI system [9] remainsfull),
populated and symmetric.

The boundary integral provides an exact boundary condition for mesh
closure and its construction relies on a cylindrical dyadic Green's function.
The entries of the boundary integral sub-matrix are

[ - ]_(,:,,¢,z) x __(a,,_,_) x _(a,¢', :'1

•W,(a,¢',z';_j,_Sj,_:j,gj)d¢' dz'dCdz (8)

where the weight functions are given by (4) and evaluated at the surface

p = a. In (8), the dyadic Green's function (92) satisfies both the radiation

condition and the Neumann boundary condition at p = a. This dyadic

Green's function may be expressed exactly [8]

c"(_, _,z) =

a*'(a,$,_) -

(27r)2 ,_=Y___¢ o,, 3' H_(2)(3,

(2_-)2,,=-o¢

nk,, _2 H_')(3")

koak, ] H',,(2)(-),)

eJ(n¢-k._)dk z

eJ(n$-k,_)dk *

where 3' = kpa and kp = _ - k_. However, for large radius cylinders, (9)
is computationally prohibxtive. In these cases, which are of main concern

in this paper, it is advantageous to employ an asymptotic expression for G_

[9, 10, 11, 12]. These employ a creeping wave series expansion of which only

the two direct path contributions (see figure 3) are retained. The formula

due to Pathak and Wang [9]

G"(a,(5,5) -- jk°qe-ik°'['_r [. ( c°s20+q(1-q)(2-3c°s20))v(/3)}

(9)

9
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Figure 3: Geodesic paths on a circular cylinder.
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-) J2_qe _k°" sinOcosO{ (1-3q(1- q))v(3)}

2_r qe + q(1 - q)(2-

+q [sec2O (u(fl)- v(fl))]}

(lO)

2

t'c°s2°]x -J-- has proven quite accurate. In the deft-where t3 = ks [2-45_o_J and q = ko,

nition of/3, s is the usual geodesic path length (s = v/(a}) 2 + z 2) and 0 is

the direction of the trajectory (0 = tan -1 [-_]). Depending on which of the

two direct paths (shown in figure 3) is used, • = _ or } = 2_r - _. The soft

and hard Fock functions, u(13) and v(13) respectively, are characteristic of

on-surface creeping wave interactions and have been extensively investigated

by Logan [13]. Although computation of the Green's function (10) is now

tractable, evaluation of (8) must be done so that a discrete convolutional

system is maintained and the singularity of (8) at s = 0 is properly treated.

Care must be taken in evaluating (8) so that the overall storage require-

ment remains O(N) and the singular integrals of (8) are accurately computed.

If uniform zoning is used, the resulting sub-matrix ([G]) is block Toeplitz and

hence amenable to solution using the BiCG-FFT method. For the non-selfcell

contributions, mid-point integration may be used while a regularization pro-

cedure must be employed for the self-cell. Bird [12] noted that (10) recovers

the metallic screen Green's function when 13 = 0 within the available ap-

proximation order. This suggests that (8) may be regularized by adding and

subtracting from (10) the function

[7 VV] e -jk°n2_o(a,_,_)= +_ 2--_ ; R= I_'-F I
(11)

which is the free-space dyadic Green's function multiplied by two. The re-

sulting regularized Green's function (curvature contribution) is given by

(_ (a, _, £') jkoqe-Jkos _ + - - E.I )-L )

11



_rjk°qe-Jk°'sinOc°sO{(1-3q(1-q))[v(_)-l]}

-J2_qe-Jk°'{ (sin26 + q(1-q)(2-3sin20))[v(_)- 1]

+q[+ do }
(12)

and since it is no longer singular it may be evaluated numerically. The planar

contribution may be calculated in the manner described previously by Jin

and Volakis [5]. The FEM-BI matrix has now been fully developed and it

remains to specify the excitation function for external sources.

3 Plane Wave Excitation

Plane wave excitation of the geometry is considered in this section for scatter-

ing analysis. The use of the exact boundary condition in (1) allows coupling

of an exterior excitation field into the cavity. We will describe the form of

the source functional, f_,t, and discuss its numerical implementation.

The forcing functional, due to exterior sources (f_,t) is given by

f_t = j Zokoa Is, l_(a, ¢', z'). _(a, ¢', z') x g_¢(a, ¢', z')d¢' dz' (13)

where l_(p, ¢, z) is the testing weigh+t for the i th row of the matrix and/_'

represents the magnetic field on the cylinder's surface in the absence of the

cavity. A plane wave

ffj = _i e-Jko(k+'r3

gi : yo(_i x _i)e-jko(l;i.r- 3

= Yo [fiisinTcosOi_ _icosT_ ksinTsinOi ] ej ko[psin o, cos (¢- ¢, )+_co_o,]

(14)

is assumed to be incident on the cylinder from the direction (0+,¢i) where

3' is the polarization angle and _i = 0icos 7 + q_isin 7 is the electric field

polarization. The total surface field is given by the sum of the incident

12



and corresponding scattered field from the infinite metallic cylinder [14].
Specifically,

-.o$=

(15)

where

H_Vl(a,$,z) I cos 
= -2Y°rkoasinO, ,_=-o_ [H_2)(koasinO,) +

n sin 3' cos Oi e.i,q _ +_,__.)
J koasinO, H',,O)(koasinOi)

eJ (_+_-_,)
H;Vt(a, ck, z) = j2YoS'nTe sk°c°_°'z ,,7----- (16)

rrkoa ,=-oo H'_O) (koa sin Oi )

is obtained from traditional modal analysis. These expressions may be ap-

proximated by retaining only a few terms of the series if koa sin Oi is small.

However, as this parameter becomes large (e.g. for large a and 0i _ 90°),

(16) may be replaced with equivalent asymptotic representations similar to

those considered earlier. Utilizing Watson's transformation and Fock theory

[14] in connection with (16), we find that

H71

I-I_ l

2

-Yo sin 3' sin Oiejk°c°'o'z E e-Jk°a'i"°'¢" [g(°)(m¢p)] *
p----1

2 •

m 2 eJkO¢o,0,, y_ e-Jko-a-0,¢, [f(°'(mCn) ]
j2Yo cos 3' koa sin Oi

p=l

-Yo sin 7 cos Oiejk°¢°"°_z y_(-1)ne -jk°a'in°'¢" g(°)(mCp)
p=l

m )]*-J koa sin Oi9(1) (rnCp (17)

1

in which (I)a = _- (_b-_bi), ¢2 - (_b- _bi)-_, m = [ 2 ] , and
complex conjugation is denoted by an asterisk. The appropriate far-zone

Fock functions (g(O), gO) and f(o)) are given by Logan [13].

13



The asymptotic formulas (17) arequite accurateexcept in the geometrical

optics region (¢ _ ¢_). In this case, Goriainov's [15] expressions

H_ 't

"" -Yo sin asin O;eJk°¢°_°"{e -jk°a$inO'@' [g(O)(rO* 1 )]"

+e m°'_"e' °°'(_-_') [G(-m cos (¢ - ¢,))]" }

O¢ 0 *[:,,(m,,)]
"_ j2Yo cos koa sin Oi {

+e jk°_'i"°' c°'(_-*') [V(-m cos (¢- $i))]* }

+ Yo sin o_cos OieJ'oc°S°'Z { e-J'oasin°, O' [9(°)( rn¢, )

_' . m )]*3koa-_m _ieO)(m_m

_dkoa,i,,0, co_(_-#,)[G(-m cos (¢ - ¢,))

m ]'}-J koa sin O_G(' )(-m cos (¢ - _, ) (is)

have been found to be more accurate and can be used instead of (17). The

Fock functions (G, G (1) and F) are again defined in Logan [13]. These

surface field expressions may be used to calculate the entries of the column

vector {f/_,t} efficiently via a numerical evaluation of (13). In particular,

the modal series (i6) is used When koasinO_ < 10 and either (17) or (18)

for koa sin0i > 10 as appropriate. With the excitation functional and the

FEM-BI matrix now specified, the BiCG-FFT method [16, 17] may be used

to determine the unknown electric fields within the cavity.

4 Scattering

Once the cavity aperture and volume electric fields have been determined by

solving (2) for an external excitation, the radar cross section (RCS) may be

calculated. The far-zone fields may be computed by integrating the aperture

fields with a suitable Green's function. In this section we present the relevant

14



formula for calculating the far-zonefields and hencethe RCSdue to excitation
by a planewave (14).

To determinethe far-zonefields,webeginwith the integral representation

for the scattered magnetic field in terms of the aperture fields. We have

fI'(,,O,O) = jYoko,, fs_=¢,',O,_;a,_',z' ) •

[t3(a, _b',z') x/_(a, 4/, z')] dO' dz' (19)

with (r,0,4)) indicating the observation point in spherical coordinates. When

the observation point is very far from the cylinder, the dyadic Green's func-

tion in (19) can be replaced by its far-zone representation

_2(,',o,_;a, _s',:,') ~ _-sko,ko, [a°*O_'+c°z°_"+ a*_'] (20)
where the unprimed unit vectors are functions of the observation position

and the primed ones are functions of the integration point in (19). The

components of this far-zone Green's function

GO* ,._ j 2ko cos O " co.0,' _ n .,_.
(2rc)2(koasino)2e_kO ,_=-_Y_ H'(2)(k°asinO) C (2+(*-4,'))

GOz j 2. , _ 1 ., ,
e'Tk°c°sOz Z eJn(_'+(¢-¢ ))

(2r) 2 a ,,=-_o H'(2}(koasin O)

F _ 1 - 7r I

~ ( _d ko e"(_+(*-*)) (21)G** j 2 ¢¢_o, y_ H(2)(ko asinO)21r) 2 a sin ,_=__

are determined by a mode matching procedure. As one might expect, these

series converge rather slowly for large koa sin 0. They must therefore be recast

in another form by employing Watson's transformation and Fock theory as

was done previously (17). In doing so, we obtain

ko cos Oe_koCO, O_
[g(°)(m¢p) 0g (1 ]"

• , 2 m )(ml'_)GO*
~ 47r E(-- 1)Pe-'/k°asin 0%' -- Jkoasin

p=l

2

ko sin 0 o2 e-jkoasinO_p [ 1"GO.
4r e'ik°_°' Y_ tg(°)(m(I)P) J

p=l

T/22 _ 2 •

G_* "_ 2aTr--sin 0 _-jk°c_'°" E e-jk°a'dnOOp [f(O)(t/l(i)P)] (22)
p----I

15



where the Fock functions are the sameas those usedwith (17) due to reci-
procity. As was the casefor the planewave source,Goriainov's [15] approx-
imations are more accurate in the geometrical optics region (_b'_ if) and
similar expressionsmay be obtained for (22) aswas found for (17). The far-
zone scattered field can be computed numerically by using (19) and either
the seriesor asymptotic formula asappropriate. Having done so, the RCS is
calculated from

0, ¢)1 (23)
= lirn 4rr21 ,(r,O,O) I

Above we presented a FEM-BI formulation suitable for modeling cavity-

backed structures embedded in a circular cylinder. Next, we consider a few

numerical calculations aimed at validating this formulation and in giving

us an appreciation on how the cylinder's curvature influences the scattering

parameters.

5 Results

Having Solved for the electric fields induced by an incident plane wave, the

resulting RCS data must be validated with known results. As previously

mentioned, available measured or computed data is rather scarce and as

a consequence, we are forced to rely on limiting cases in order to validate

this work. As the radius of curvature decreases, a cylindrical-rectangular

cavity will approximate a planar-rectangular cavity. Another limiting case

involves comparison of an elongated 3-D cavity with a corresponding 2-D

cavity for normal incidence (Oi = 90°). Finally, we may compare our infinite

cylinder results with a finite Body of Revolution (BOR) model for certain

polarizations and angles of incidence. We begin with the quasi-planar case.

The first validation effort for scattering by cavity-backed patch antennas

relies on the fact that a small patch on a very large radius cylinder is quasi-

planar and approximates rather well an equal sized planar patch. For our test

we chose as a reference a planar 1.448" x 1.083" patch residing on a 2.89" x

2.10" =× 0.057" cavity filled with a dielectric having er 4. The equivalent

patch on a 10,_ cylinder is 6.46 ° x 1.083" residing on a 12.90 ° x 2.10" x 0.057"

cavity. Figure 4 shows the results for the patch on a large radius cylinder

with corresponding data for the planar cavity-backed patch. Clearly, the two

16
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Figure 4: Comparison of RCS for a planar patch (1.488" × 1.083") residing on

a 2.89" x 2.10" x 0.059" cavity filled with er = 4 dielectric and a corresponding

quasi-planar patch on a large radius (10A0) cylinder.
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RCS patterns are in excellent agreement, and although figure 4 illustrates

only monostatic scattering in the 4_ = 0° plane, additional runs for normally

incident monostatic scattering and various bistatic situations yield similar

agreement.

Comparisons may also be made for elongated cavities and 2-D MoM re-

sults. Long narrow cavities have very little axial interaction for principal

plane (0 = 90 °) excitation and therefore results based on this formulation

should compare well with corresponding 2-D data. It is well known that the

RCS of the 3-D scattering body of length L >> _0 is related to the corre-

sponding 2-D scattering of the same cross section via the relation

= _r2D (24)

Such a comparison is shown in figure 5 for monostatic scattering by a 45 ° x

51 x 0.1)_ cavity for both principal polarizations. Once again the agreement

between the two results is excellent, thus providing a partial validation of the

formulation for highly curved geometries. We remark that similar agreement

has been observed for bistatic scattering in the 0 = 90 ° plane.

The planar approximation eliminates the effects of curvature, which is a

primary interest in this work, and the 2-D comparisons done above are only

valid for normal incidence. To consider oblique incidence on a highly curved

Structure, we resort to comparisons with a Body of Revolution (BOR) code -v

for wraparound cavities. Since the BOR code can only model finite struc-

tures, we simulate an infinite cylinder by coherently subtracting the far-zone

fields of the finite structure without a cavity from similar data which includes

the cavity. Such an procedure mimics common measurement practices and

was found suitable for near normal incidence and quite acceptable near graz-

ing incidence in the case of H-polarization (a = 90°). An example calculation

for the latter case is given in figure 6 where a bistatic scattering pattern is pre-

sented in the _b= 0 ° plane due to a plane wave incident at (0i = 90°,q_i = 0°).

Clearly, there is good agreement between the FEM-BI results and data based

on the BOR formulation.

ThE previous Comparisons serve to validate the formulation. Having done

so, it is instructive to examine the effect that curvature has on the scattering

properties of cavity-backed patch antennas. Consider a 2 cm × 3 cm patch

residing on a 5.0 cm × 6.0 cm × 0.07874 cm cavity which is filled with

a dielectric having ¢r = 2.17. Figures 7 and 8 illustrate the behavior of
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incident H-polarized (a = 90 °) plane wave.

2O



this geometry as a function of frequency and curvature. Evidently, the

resonance behavior of this patch is sensitive to curvature for both principal

polarizations. The frequency response for E-polarizatlon is more sensitive to

curvature since the radiating surface field component is parallel to the long

side of the patch and cavity. If the patch and cavity were oriented so that the

long side is in the _direction, the response to H-polarization would exhibit

greater sensitivity. Such an effect is important to low observable antenna

designers since they want to operate the antenna in the region of lowest

RCS. This low return region is a consequence of delicate cancellations due to

the physical layout of the aperture. Such cancellations are not as complete

for highly curved structures as they are for planar cavities.

Conforma] antenna designers often use wraparound antennas to achieve

omnidirectional coverage. Two different configurations are typically used: a

wraparound cavity where the cavity is filled with a single continuous collar

of dielectric and discrete cavities symmetrically placed around the circum-

ference of the cylinder. These two configurations are shown in figure (9).

Since near resonance, the radiation properties of these two types of antennas

is identical, any RCS advantage which one might possess could govern the

appropriate choice of arrays. Figure 10 compares the E-polarized monos-

tatic scattering at 3 GHz in the 0 = 90 ° plane for a wraparound cavity and

four discrete cavities; where the patches and cavities are identical to those

used in the previous example. Not surprisingly, the wraparound structure

has a higher return due to coupling within the substrate. However, since in

this case the scattered field is due to the z component of the surface field

(C-directed magnetic currents), both cavities yield large scattered fields in

the four directional lobes. Figure 11 is the corresponding comparison for

H-polarization. In this case, the scattered field is attributed to the ¢ compo-

nent of the surface fields (z-directed magnetic currents). Therefore, substrate

modes diffract near the patch resulting in discrete lobes for the discrete array

while creeping waves shed isotropically for the continuous wraparound cav-

ity. Low observable designs will favor discrete cavity arrays over wraparound

cavities since the scattering may be channeled in preferred directions and

the overall scattering level is consistently lower. A final example is shown in

figure 12 where we observe that other than the expected higher scattering

from the wraparound cavity, the scattering behavior of the two arrays is very

similar.
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Figure 10: Comparison of E-polarized monostatic RCS at 3 GHz for a four

patch array placed on a wraparound collar or in four discrete cavities. The

patches and cavities are identical to the one used in figure 7. The observation

plane is O = 90 °.
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6 Conclusions

In this paper, we have presented a Finite Element Method - Boundary Inte-

gral technique suitable for electromagnetic scattering calculations for cavities

embedded within a circular, metallic cylinder. This formulation is analogous

to the FEM-BI approach used by Jin and Volakis [1, 5, 6] and may accord-

ingly be used for the analysis of scattering by a large array of cavity-backed

patch antennas. These cavities need not be identical, periodically spaced or

homogeneously filled and may in fact may possess lumped impedance loads

or surface metallization layers. The FEM approach employs vector finite el-

ements which properly represent the electromagnetic fields and possess high

geometrical fidelity for cylindrical-rectangular cavities. Such elements were

presented and are analogous to the bricks used for modeling rectangular

cavities. In addition, we presented an efficient method for evaluating the on-

surface and far-zone dyadic Green's functions. The presented formulation is

amenable to solution using the BiCG-FFT method provided uniform zoning

is used across the aperture and as a consequence, this implementation has

low computational and memory demand. We have presented some validation

of this work with appropriate limiting cases which provides further archival

reference data. In addition, we showed how this formulation may be used to

influence conformal antenna designs.
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i'(4- ¢,)(4- ¢,)d¢_ (A-I)

Eachof the aboveunevaluatedintegrals is of the form

u 1 1

The integrals IJ_ )'(2)

the system.

B

(A-2)

are used in the assembly of the FEM portion ([.4]) of

Fock Functions

The asymptotic form of the dyadic Green's function with observation both on

the surface of the cylinder and in the far field involves Fock functions. These

have been extensively studied and tabulated by Logan [13]. The numerical

evaluation of these functions are performed either for small arguments or

large arguments.

The on-surface Fock functions used in this paper are

2 i r Joo,-,2,,13 w'2(r )

.._ 2 ( 7. )l

u(_) = ej3"/4 f¢_ e-J_'dr (B-l)

where w2(r) and its derivative w'2(r ) denote Airy functions of the Second

Kind. For small arguments (_ < 0.6), the asymptotic expansion of (B-l) is

given by

v_
j7_3 + 5__i__v__ ,_2 + ...v(_) ,,_ 1.0--_-_23-+ 7 --_j_. _9

_(_) ~ 1.0--_-_ -,_ +j _3+ v%-S_ +... (m2)

while a rapidly converging residue series is used for ( > 0.6

lO

4;-/Z (<)-'V ~ =e-J_

n=l

32



10

u({) -,, = 2e _ V_ y_ (rn)-' e -j_ (B-3)

t

where r,_ and r,] are zeros of w_(r) and w_(r), respectively. Those zeros are

given in the following table

Table B-1
I

Zeros of the w_(r) and w2(r )
I I

r,, = Irnle-i_ and rn = Irn]e-J_

n

1 2.33811

2 4.08795

3 5.52056

4 6.78661

5 7.94413

6 9.02265

7 10.0402

8 11.0085

9 11.9300

10 12.8288

It. I :1
1.011879

3,24819

4.82010

6.16331

7.37218

8.48849

9.53545

10.5277

11.4751

12.3848

The far-zone Fock functions are given by

jl eje_

g(0(_) _ Vf_v_dr

jl ej&

f(')(_) = _ fr w--'_ dr

= (B-4)

I

where wl (r) and its derivative wl(r) denote Airy functions of the First Kind

and the integration contour is given by Logan [13]. These functions, g(0)(_),

g(1)(_) and f(o)(_), may be calculated using
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g(°)(O
d

= 2.0e-J3 (<-1.3

6 c(m)
= 1.39937 -4- _ rn-----_(x() '_ - 1.3 _< ( < 0.5

m----I

|0 e[ _a'' (_'z)' ]

= F_, ,_'(mlAi(m) 0.5 < _ < 4.0
m----I

= 1.8325 [ > 4.0 (s-5)

.0.25 0.25) £= -j2.0 (2+.7 ( _4 e-33 _ <-2"8

= _ c(m)':'_,,=1 _ (0 "-1 - 2.8 < ( < 0.5

zo c[_(,.)_]

= _ Ai(m) 0.5<(_<4.0
rn--.-_ 1

= -1.8325 (0.8823 - j0.5094 + j(2)
[-(o.ss_3-jo.5oo4)_-j_]

e (>4.0 =

(B-6)

f(°)(O 0.25 0.5 .d= j2( 1- (--5--+--_-)e-_3 (<-1.1

c(m)
= 0.77582+e -j'q3_ m! (x()m _1.1_<(_<0.5

1o e[,,,_(.,)_]

= e-J']3 E Ai'(m) 0.5 < ( _< 4.0
m----1

= 0.0 (>4.0 (B-7)

with constant a = e -jsr]6 and the coefficients for (B-5) and (B-6) given in

the following table
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in

1

2

3

4

5

6

7

8

9

10

Table B-2

Constants for (B-5) and (B-6)

c(m) a'(m) Ai(m)

0.7473831

-0.6862081

-2.9495325

-3.4827075

8.9378967

56.1946214

1.01879297

3.2481975

4.82009921

6.16330736

7.37217726

8.48848673

9.53544905

10.52766040

11.47505663

12.38478837

0.5356566

-0.41901548

0.38040647

-0.35790794

0.34230124

-0.33047623

0.32102229

-0.31318539

0.30651729

-0.30073083

The corresponding constants for (B-7) are given as

Table B-3

Constants for (B-7)

c(m) a(m) Ai'(m)rfl

I

2

3

4

5

6

7

8

9

I0

1.146730417

0.86284558

-2.0192636

-9.977776

-14.59904

49.0751

2.33810741

4.08794944

5.52055983

6.78670809

7.94413359

9.02265085

I0.04017434

11.00852430

11.93601556

12.82877675

0.70121082

-0.80311137

0.86520403

-0.91085074

0.94733571

-0.97792281

1.00437012

-1.02773869

1.04872065

-1.06779386
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Abstract

Conformal antenna arrays are popular antennas for aircraft, space-

craft and land vehicle platforms due to their inherent low weight, cost

and drag properties. However, to date there has been a dearth of

rigorous analytical or numerical solutions to aid the designer. In fact,

it has been common practice to use limited measurements and planar

approximations in designing such non-planar antennas. In this paper,

we extend the finite element-boundary integral method to radiation

by cavity-backed structures in an infinite, metallic cylinder. The for-

mulation is used to investigate the effect of cavity size on the radiation

pattern for typical circumferentially and axially polarized patch anten-

nas. Curvature effect on the gain, pattern shape and input impedance

is also studied. Finally, the accuracy of the FE-BI approach for a

microstrip patch array is demonstrated.
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1 Introduction

Modern aircraft and missile deigns seek to utilize conformal antenna arrays

rather than conventional protruding antennas due to their low weight, low

drag, low cost and flexibility. Although most useful aircraft surfaces possess

some curvature, the vast majority of available design information is restricted

to planar elements. Indeed, the literature is rich with approximate [1], nu-

merical [2] and experimental [3] design and characterization data for planar

structures. The most common antenna element is a microstrip patch printed

on a dielectric coated groundplane. Dielectric coated cylinders have also been

investigated using approximate [4] and numerical [5] approaches.

Often, it is desirable to enclose each radiating element within a metal-

lic cavity to suppress parasitic substrate coupling [6]. Approximate models,

such as the cavity model, are typically not modified to account for the metal-

lic sidewalls of the surrounding cavity since the approximations involved in

this approach limits its operation to resonant patches. Experience has shown

that a surrounding cavity does not effect the radiation pattern of a resonant

patch antenna. However, since integral equation formulations are meant to

operate at any frequency, these formulations need be modified to account for

the metallic sidewalls. This is done by partitioning the problem into an inte-

rior cavity region and an open exterior region and enforcing field continuity

across the aperture. Such an approach requires a complicated dyadic Green's

function for the interior region and as is the case with all integral equation

formulations, the resulting linear system is associated with a fully populated

matrix and hence imposes a large O(N _) memory and computation demand.

Additionally, most integral equation formulations utilize equivalent surface

currents and are therefore inappropriate for modeling inhomogeneous sub-
strates.

An alternative formulation, utilizing the Finite Element-Boundary Inte-

gral (FE-BI) method, was proposed by Jin and Volakis [7] which was suitable

for cavity-backed antennas recessed in a metallic groundplane. As with all

partial differential equation formulations, this approach is associated with a

highly sparse system which requires only O(N) storage. Additionally, when

coupled with a Biconjugate Gradient-Fast Fourier Transform (BiCG-FFT)

solver, the computational burden is only O(Nlog(N)). Since this approach

is a volume formulation, inhomogeneous substrates may be readily modeled.

This FE-BI method has been successfully used for scattering and antenna
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performanceanalysis in planar platforms.
Recently,the FE-BI method wasextended to cylindrical-rectangular and

wraparound cavitiesfor scattering calculations [8]. New divergencefree, high
fidelity edge-basedelementswere presentedalong with an efficient solution
strategy which exploited an asymptotic evaluation of the appropriate dyadic
Green's function as well as the BiCG-FFT solver. The resulting computer
code wasshown to accurately compute the scattering by planar and highly
curved elements.This paper investigatesthe accuracyof this FE-BI method
formulation for antenna performanceanalysis. Both radiation pattern and
input impedance calculations will be compared with known results. The
effect of curvature on the pattern shape, the resonancebehavior and the
input impedancewill be explored.

2 Formulation

In this section, the FE-BI formulation appropriate for radiation analysis is

developed for cavity-backed antennas recessed in an infinite metallic cylinder

(see figure 1). As usual, the finite element formulation permits substantial

modeling flexibility, including cavity inhomogeneities, lumped loads and mi-

crostrip feeding lines.

The FE-BI formulation begins with the weak form Of the vector wave

equation followed by specification of appropriate vector shape functions and

dyadic Green's function. The resulting FE-BI equations are then used to

solve for the total electric fields within the cavity and on the aperture (see

for example Volakis et al. [9]). For the specific configuration at hand, the

weak form of the wave equation can be written as

_ { V × IYdj(p'¢'z)" V × l_'i(p'¢'z)/z,(p,¢,z) ....

--k2oe.r(p, ¢,z)ITC'j(p, ¢,z) • I_i(p,¢,z) }pdpdCdz

_2(a,¢,5) × _(a,¢',z'). l_j(a, ¢',z')] de' dz'dCdz = f_'*' + Z _' (1)

In this, l_i are vector basis functions with support over the volume V/which is
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Figure 1: Illustration of a typical cavity-backed antenna situated on a metal-

lic cylinder and the associated coordinate system.
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associated with the i th degree of freedom, and in a similar fashion, S, and S_

represent aperture surfaces associated with the i th and jth degrees of freedom,

respectively. The appropriate dyadic Green's function is denoted by G2 and it

has convolutional (¢ = ¢- ¢', 5 = z - z') form when evaluated on the surface

of the cylinder, p = a. The unprimed coordinates represent the test point

while the primed ones denote the source point. The free-space propagation

constant is given by k0 = 2_ where A0 is the free-space wavelength. The
A0 '

cavity is filled with an inhomogeneous material having relative constitutive

properties er and #r. The function ,5_(i)Sa(j) is the product of two Kronecker

delta functions. Hence, it identifies which pairs of unknowns belong to the

aperture and accordingly contribute to the boundary integral sub-matrix.

The FEM-BI equation (1) may be rewritten in matrix form as

_E;' t {0} (2)

where the entries of [.,4] are due to the FEM portion of the formulation and

[G] is the boundary integral sub-matrix. In (2), E_ v and Ej ''t denote degrees

of freedom associated with the aperture and interior fields, respectively. In

this, fi,.,t are functions of the internal excitation and for this paper a radially

oriented probe feed is considered.

The matrix entries, [.A] and [_], are given in a previous paper [8]. In

addition, the vector elements, dyadic Green's function evaluation and far-

zone field formulae are given and are therefore not repeated here. Hence, we

need only specify the interior source functional in order to model a radiating

element. That functional is given for general impressed sources as

{ }sgo, = - v × L J+jkoZoJ'"'(o,¢,z) •l_i(p, ¢, z)p dp de dz

(3)

where fi,t and ]Qint are the impressed electric or magnetic current densities

representing the sources. For a radially (_) directed probe feed, the impressed

monopole current located at (¢,, z,) is given by

2-' = _i0_(¢-¢')(z-z') (4)
P
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which results in an excitation function (3)

if the edge-basedelementsof [8] are used.

Having specified the finite element and boundary integral matrices as well

as the internal excitation for those systems, we use the BiCG method to solve

for the unknown electric fields throughout the computation domain. The FE

matrix is highly sparse and hence may be efficiently solved using a sparse

matrix-vector product. It is also important to note that the matrix-vector

product associated with the boundary integral can be performed using FFTs.

Hence, the resulting BiCG-FFT solver is highly efficient without consuming

excessive memory resources. The electr{c field may now be used to compute

antenna parameters such as the gain and the input impedance.

The radiation pattern is computed by integrating the aperture fields with

the far-zone dyadic Green's function given in [8]

B'(r,0,O) jrokoa fs ¢s;a, ¢;,z').

(6)

with (r,0,_b) indicating the observation point in spherical coordinates. In the

far-zone, the electric and magnetic fields are related by

E_ = -ZoH;

- ZoH (7)

which is used to compute the antenna gain

G_tB(0,_b) = 101og,0141r(-_-_)2]E_(0, q_)]2]+101og10 [ A_ ]tZon,.J (8)

where Am is the wavelength in centimeters, R/n is the input resistance which

is given below and E _ is the radiated electric field as r --_ oo.

In addition to the antenna gain, designers are concerned with the input

impedance of an antenna for feedline matching purposes. The FEM approach

allows the calculation of the input impedance of the radiating structure in a
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rather elegantmanner. The input impedanceis comprisedof two contribu-
tions [10]

= zv + ZD (9)

where the first term is the probe's self-impedance ( e.g. the probe's impedance

in the absence of the patch) and the second term is the contribution of the

patch current to the total input impedance. The probe self-impedance ac-

counts for the finite radius of the probe and hence is omitted when a zero-

thickness probe is assumed. Ignoring the probe-feed's self impedance, we

have [10]

Z,_ 1 /v,= -'_o E(p,q_,z). _i'_t(p,¢,z)pdpdcbdz (10)

where the impressed current is given by (4), V,- refers to the volume elements

containing the probe-feed, the electric field is the interior field at (p,_b,z)

and Io is the constant current impressed on the probe. Utilizing (4) and

assuming the edge-based elements presented in [8], the input impedance (10)
is evaluated as

Zii = _E(i)_iP_Ioaihiln( pb)_ [(_o-q$i)(z,-_.i)] (11)

which must be summed over the four radial edges of the element which con-

tains the feed. Having specified the FE-BI system, interior excitation func-

tional and appropriate antenna parameters such as gain and input impedance,

the formulation may be used to analyze the radiation characteristics of sev-

eral interesting configurations.

3 Results

The FE-BI formulation presented in [8] may be used for antenna performance

studies by making the modifications outlined in this paper. This method can

be used to determine the role of curvature in the radiation pattern and the

input impedance of a cavity-backed patch antenna. Additionally, designers

are concerned with the effect of the cavity size might have on antenna perfor-

mance. In particular, since the cavity is used to suppress parasitic substrate
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modes, varying the cavity sizecan be used to determine the effect of such
modeson the radiation pattern,

Two types of antennaelementsare investigated and they are shown in
figure 2 whereeachpatch is aa ° × b in size with a denoting the radius of the

cylinder. A patch whose radiating side walls are axially oriented is termed

an axially polarized patch and is fed at ¢0 = _. Circumferentially (or az-

imuthally) polarized patches have radiating walls forming constant z-surfaces

b Observation in the 0 = 90 ° plane is the E-and are typically fed at za = _. _

plane for circumferentiaiiy polarized patched and the H-plane for axially po-

larized elements. The terminology originates with the cavity model for patch

antennas. We will now characterize a typical cavity-backed patch antenna.

Several computed and measured antenna patterns have been published for

patches printed on a coated cylinder. One such patch, which is 3.5 cm x 3.5

cm, was used by Sohtell [11] to compare the accuracy of the cavity model [4] to

a surface current integral equation [5]. The measured data was taken at 2.615

GHz for a metallic cylinder which was 63.5 cm long and had a radius of a =

14.95 cm. The cylinder was coated with a 0.3175 cm uniform dielectric having

relative permittivity of er = 2.32. Data was taken for -180 ° < ¢ < 180 ° in

the 6 = 90 ° plane corresponding to the E-plane for circumferentially polarized

elements and the H-plane for axially polarized ones. Figure 3 compares these

measured patterns with data generated using the FE-BI formulation for an

identical patch placed within a 360 ° × 7 cm cavity. This wraparound cavity

best simulated the measured coated cavity. Note that the H-plane patterns

are symmetric due to the symmetric placement of the feed, whereas the

E-plane patterns are not symmetric. The placement of the feed was not

specified in [11]; however, the agreement for the E-plane pattern shown in

figure 3 indicates that the position used in the FE-BI model (a¢, = -1 cm)

is reasonable. The feed was placed at z, = -1 cm for the axially polarized

(H-plane) case.

In a previous paper [8], discrete cavity arrays were found to have a sig-

nificantly lower radar cross section (RCS) compared to a wraparound array.

Thus, the size of the cavity had a significant effect on the scattering prop-

erties of the array. The two antennas presented by Sohtell [11] were placed

within cavities which were 7 cm high and approximately 30, 50, 90, 180, 270

or 360 degrees in angular extent. Figure 4 illustrates that azimuthal cavity

size has little effect on the radiation pattern for a circumferentially polarized

element. A similar comparison for the axially polarized patch is shown in
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Figure 2: Illustration of (a) a circumferentially polarized patch element; and

(b) an axially polarized patch element. The radius of the cylinder is denoted
by a.
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Figure 3: Comparison of measured [11] and computed data for a circumferen-

tially polarized element (E-plane) and an axially polarized element (H-plane).

The antenna (3.5 cm × 3.5 cm ) was printed on a 14.95 cm cylinder with a

0.3175 cm coating (or = 2.32). The probe feed was place at (a¢,,zs) = (-

1.0,0.0) for the circumferentially polarized patch and at (a¢,, zs) = (0.0,-1.0)

for the axially polarized antenna.

46



0.0

-10.0

...... 80 Cavity
2_ -30.0

270°Cavity

-40.0
-180.0 -90.0 0.0 90.0 180.0

Angle (_) [deg]

Figure 4: Effect of cavity size on the E-plane radiation pattern of a circum-

ferentially polarized patch antenna.
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figure 5. The back lobe of the antenna (near ¢ = 180 °) is very small for

cavities less than 180 ° in extent but increases for larger cavities. For cavities

which lie on the forward face of the cylinder, the substrate modes diffract off

the cavity walls; an effect which has little influence on the main lobe of the

pattern. However, for wraparound cavities and cavities which extend into

the back side of the cylinder, the substrate modes shed like creeping waves

giving rise to the back lobe.

Having established the effect of cavity size on the antenna patterns, it is

instructive to gauge the effect that curvature has on the resonance behavior

(or gain) of patch antennas. The two antennas were placed in 14 cm × 14

cm cavities which were place on cylinders with increasing radius. The fre-

quency was allowed to vary from 2.4 GHz to 2.7 GHz and the peak radiated

power was recorded at each frequency. For this paper, the radiated power is

recognized as the first term of (8). Figure 6 illustrates that the resonance fre-

quency increases with increasing curvature for a circumferentially polarized

antenna, but the maximum gain is similar regardless of element curvature.

Note in the cavity model, the radiating edges for a circumferentially polar-

ized patch are the azimuthal walls of the cavity (see figure 2) which have

a constant separation regardless of the cylinder radius. However, the axi-

ally polarized patch has decreasing resonant gain with increasing curvature

as shown in figure 7. For this patch, radiation is attributed to the axial

magnetic walls of the cavity model which have increasing angular separation

with decreasing curvature. These walls radiate strongly away from the pat-

tern peak (¢ = 0°). Accordingly, the gain of an axially polarized antenna

decreases with increasing curvature. The radiation pattern of a circumferen-

tially polarized antenna is largely unaffected by curvature as shown in figure

8 when excited at a resonant frequency. However, the radiation pattern of

the axially polariz_ed antenna broadens as the curyature increases and this is

illustrated in figure 9. Once again, both relationships are readily explained

by considering the effect that curvature has on the orientation of the cavity

model radiating walls.

In addition to the gain and pattern of an antenna, designers require the

input impedance for matching purposes. For the antenna examined above (in

a 14 cm x 14 cm cavity), the input impedance was calculated from 2.4 GHz

to 2.7 GHz for various cylinder radii. Figure 10 illustrates that the input

impedance of a circumferentially polarized patch antenna is not affected by

curvature while figure 11 shows that increased curvature reduces the input
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Figure 5: Effect of cavity size on the H-plane radiation pattern of an axially

polarized patch antenna.
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Figure 6: Resonance behavior of a circumferentially polarized patch antenna
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Figure 8: Variation of the radiation pattern shape with respect to curvature

for a circumferentially polarized antenna.
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Figure 9: Variation of the radiation pattern shape with respect to curvature

for an axially polarized antenna.
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Figure 10: Input impedance of a circumferentially polarized patch antenna

for various cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and

the cavity size was 14 cm × 14 cm.
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Figure 11: Input impedance of an axially polarized patch antenna for various

cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and the cavity

size was 14 cm × 14 cm.
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impedanceof an axially polarized patch. This observation agreesthe the
results reported by Luk et. al. [12].

In additlon to single patcfies, the FE-Bi formulation may be used to de-

sign microstrip arrays. Such an approach includes mutual coupling between

elements which is ignored by the cavity model. Furthermore, the FE-BI for-

mulation consumes less computational resources than a comparable integral

equation formulation due to the sparsity of the FE matrix. The H-plane

pattern of a four element array was measured to gauge the accuracy of the

FE-BI approach. Each element is 2 cm × 3 cm and placed within a 5 cm ×

6 cm × 0.07874 cm cavity which is filled with a dielectric having er = 2.17.

The cylinder _is 91.44 cm long and has a radius of 15.24 cm. The cavities

are placed symmetrically around the cylinder (e.g. a patch is centered at

0 °, 90 °, 180 ° and 270°). Only the patch centered at 0 ° was excited while

the remaining patches were terminated with a 50fl load. The driving patch

is axially polarized and the feed is located at zs = -0.375 cm. Figure 12

illustrates the excellent agreement between the FE-BI formulation and the

measured data.

4 Conclusions

In this paper, the FE-BI formulation for cavity-backed antennas was pre-

sented. The data generated by this code for a common cylindrical-rectangular

patch antenna compared favorably with measured data. Having validated the

implementation, the FE-BI method was used to study the radiation prop-

erties of a circumferentially and axially polarized patch antenna. The az-

imuthal cavity size was found to have little effect on the circumferentially

polarized E-plane pattern. However, for the H-plane pattern of an axially

polarized element, the back lobe is significantly larger for cavities which ex-

tend from the front side to the back side of the cylinder. A wraparound

antenna exhibited the largest back lobe implying that this lobe is a result of

creeping wave shedding. Diffraction due to the creeping wave is suppressed

for cavities not extending to the back side of the cylinder. The presence of a

back lobe must be considered when designing low observable, jam-resistant

antennas or antennas on complex platforms (e.g. an antenna near the rear

stabilizer). Thus, as was the case for scattering reduction, it is advisable to

use the smallest cavity possible.
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Figure 12: H-plane pattern for a four element patch array. Each patch is

2 cm x 3 cm and are placed symmetrically around the cylinder. Only the

patch centered at 0 ° is fed while the other patches are terminated with 50_

loads.
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The effectof curvature on the resonance,radiation pattern shapeand in-
put impedancewasstudied. Both circumferentially and axially polarized an-
tennaswereconsideredand wasfound that the resonant frequencyincreased
with increasingcurvature for both antennas.However,while the gain of the
circumferentially polarized patch remained constant, the gain of the axially
polarized patch decreasedwith increasingcurvature. Suchan effect is read-
ily explainedby consideringwhich walls of the cavity model radiate for each
polarization (seefigure 2). The radiation pattern for axially polarized anten-

nas broadens with increasing curvature while the corresponding patterns for

circumferentially polarized antennas is unaffected by curvature. The input

impedance of the circumferentially polarized antenna was not affected by cur-

vature while the input impedance of the axially polarized antenna decreased

with increasing curvature. We therefore conclude that axially polarized an-

tennas are strongly affected by curvature while circumferentially polarized

antennas are not affected by curvature.

Since the cavity model does not include mutual coupling and the usual

integral equation formulations are associated with high storage and com-

putational demand, the FE-BI formulation is attractive for array analysis.

The H-plane pattern of a discrete four element wraparound array compared

favorably with measured data.
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1 Introduction

, The Finite Element-Boundary Integral (FE-BI) technique has been used to

analyze the scattering and radiation properties of cavity-backed patch anten-

! nas recessed in a metallic groundplane. A program, CAVITY3D, was written

. and found to yield accurate results for large arrays without the usual high

memory and computational demand associated with competing formulations.

Recently, the FE-BI approach was extended to cavity-backed antennas re-

cessed in an infinite, metallic circular cylinder. EXCALIBUR is a computer

program written in the Radiation Laboratory of the University of Michigan
Z

which implements this formulatiorr.

This user manual will give abrief introduction to EXCALIBUR and some

hints as to its proper use. As with all computational electromagnetics pro-

grams (especially finite element programs), skilled use and best performance

is only obtained through experience. However, we will comment on several

important aspects of the program such as portability, geometry generation,

interpretation of results and custom modification.

2 Formulation

EXCALIBUR implements the FE-BI formulation for cavity-backed antennas

recessed in metallic circular cylinders. The formulation imposes some re-

strictions on the geometries which will be discussed. Principally, use of the

BiConjugate Gradient-Fast Fourier Transform (BiCG-FFT) iterative solver

requires uniform zoning on the aperture of the cavity. Thus, each surface

patch has cylindrical-rectangular shape. The basis functions, dyadic Green's

function and associated field formulas are given in a paper concerning scat-

tering by these structures [1]. Modifications of this formulation for antenna

analysis was given in another paper [2].

The uniform zoning requirement causes some difficulty in modeling; how-

ever, with some practice, these difficulties may be overcome. For example,

the specification of the patch and cavity size must both be expressed by an

integer number of edges (hence nodes). Thus, if the cavity is twice the size

of the patch, one has no problem specifying the patch and the cavity with

the same uniform grid. However, if the ratio of the patch and cavity sizes are

not integers, discretization may not be possible. This is often the case with
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a continuous wraparound cavity. Sucha cavity is shown in figure 1 along
with an exampleof a discretewraparound array. If the cavity sizeand patch
sizearenot convenient,you must either changethe cavity sizeaspossibleor
changethe radius of the cylinder. If the radius is changedslightly, it will not
effect the electromagneticproperties of the structure, but it may allow uni-
form discretization. Although the restrictions imposedby the uniform zoning
requirement seemsrather stringent, with practice, an antenna designerwill
find that EXCALIBUR is quite flexible.

3 Compilation

The first task in utilizing EXCALIBUR is to compile and link the various

files of the program. The following files are required to run EXCALIBUR and

are given on the distribution diskette: ezealibur.f, dyadic.f, rnatvizGenevate.f,

preProcessor.f, vcs.f, fit.f, gauss.inc, fft.inc and excalibur.inc. These files

perform the following functions:

• excalibur.f. Main program, BiCG solver, matrix building subroutines,

FE-BI subroutine, impedance insert and various auxiliary subroutines.

• dyadic.f. Compute dyadic Green's function terms for admittance ma-

trix, on-surface and far-field Fock functions and gamma function.

• matrizGenerate.f:. Boundary integral and FE matrix terms.

• preProcessor.f. Geometry/mesh generator.

• rcs.f. Radar Cross Section, far-zone dyadic Green's function and plane
wave excitation functions.

• fit.f. Forward and inverse Fast Fourier Transform subroutines.

• gauss.inc: Numerical integration parameters for gaussian quadrature.

• fft.inc: Include file for 2-D FFT subroutines.

• ezcalibur.inc: Main memory allocation file also contains variable dic-

tionary.

The distribution disk also contains the following Fast Fourier Transform op-

tions:

• fftCooley.f. Classic Cooley-Tukey Radix-2 algorithm.

• fitSplitRadiz.f. Split-Radix algorithm by Sorenson [3].
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(a)

(b)
Figure 1: Illustration of two types of arrays: (a) wraparound array; (b)
discretecavity array
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• fftCRAY.f: Calls the CRAY library vectorized, multitasked 2-D FFT
routine.

• fftCONVEX.f: Calls the veclib vectorized 2-D FFT routine.

Prior to compilation, the user should copy one of these files into fft.f The

optimized routines for the CRAY and CONVEX architectures should be used

when possible while in general the Split-Radix algorithm should give better

performance than the Cooley-Tukey version. To enhance their efficiency, the

Split-Radix and Cooley-Tukey files utilize a decimation-in-frequency forward

transform and a decimation-in-time inverse transform in order to avoid the

need to perform bit reversal.

Another file which is included on the distribution diskette is convert-

ToASCII.f To save disk space, the geometry information is stored in a

binary format by preprocessor. The program convertToASCII is included

to produce a human-readable file (ASCII). The nodes, elements, edges, un-

knowns and other useful information is provided in a easy to read (although

disk space consuming) format. All the programs are compiled and linked by

invoking the UNIX make utility. A Makefile has been provided on the distri-

bution disk. To date, EXCALIBUR has been successfully compiled, linked

and run on the following architectures/operating systems: SUN, DEC UNIX,

HP 9000/7xx, IBM RS/6000, Silicon Graphics IRIS, CRAY and CONVEX.

Three variable must be set within the Makeflle:

• FF: The Fortran compiler name for the architecture.

• FOPT: The Fortran compiler options i.e. optimization, precision, etc.

• LOPT: The name of any libraries required for linking.

The user should uncomment these variables for the target architectures in

Makefile. EXCALIBUR is constructed by simply typing make at the com-

mand line, while the binary-to-ASCII conversion program is constructed by

entering make convert. EXCALIBUR is invoked by typing ezcalibur at the

command line while the conversion program is run with the command con-

vertToASCII. Finally, the directory may be cleaned up of all object and

executable file by typing make clean.

65



4 Geometry Information

The binary geometry file created by preprocessor contains all the information

concerning the physical structure under study except for the placement of any

probe-feeds or lumpedi_pedanceposts.Thereforfl_it±j s !mportant that the

user be aware of the geometry entered into the FE-BI portion of the code. As

previously mentions, the convert ToASCII program creates a human-readable

file from the machine-readable geometry file.

The first information provided in the resulting ASCII file is the header.

which contains the number of nodes, number of edges, number of unknowns,

etc. and an example of the header is shown in figure 2. The next field contains

the node information. The information given is as follows (see figure 3):

• Column 1:

* Column 2:

• Column 3:

• Column 3:

• Column 4:

Node number

Radial (p) coordinate in centimeters.

Angular (¢) coordinate=in d-egrees. .....

Axial (z) coordinate in centimeters.

Layer number from top of the cylinder (aperture).
=

• Column 5: Row number from lowest axial coordinate.

• Column 6: Column number from smallest azimuthal coordinate.

Each node is associated with a physical location (p,¢,z) and a grid location

(layer,row,column).

Grid points must be used in the discretization of a geometry since the

BiCG-FFT solver requires that each node pair lie an integer number of units

apart. Thus, the distance between two nodes (primed and unprimed) on the

surface of the cylinder is given by

', ')n(n, m; n m = _(n - n')aA¢ + (m - m')Az (1)

EXCALIBUR distinguishes between grid points and nodes. A grid point can

be thought of as the intersection of two lines of a piece of graph paper which

is placed on the surface of the cylinder. A node is a grid point which lies

within a cavity. The row and column number associated with a node actually

is the row and column number of the grid point which formed the node. The

first grid point which corresponds to the lower-left corner of the grid has row
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Binary filename:test.exc

ASCII filename:test.ascii

NODE statistics:

Total number of nodes: 50

Number of nodes on the surface: 25

Number of nodes along the metallic walls: 41

Number of nodes on surface metallic patches:

Number of nodes which are resistive: 0

EDGE statistics:

Total number of edges: 105

Interior edges: 9

Aperture edges: 24

a) substrate edges:

b) resistive edges:

Metal edges (NOT unknowns):

24

0

72

il III III l UNKNOWNS l lI; II III--> 33

ELEMENT statistics:

Total number of elements:

Surface Elements: 16

16

Figure 2: Geometry header.
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Node

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

rho (cm) phi (deg)

1

1

1

1

1

1

1

1

1

1

1

1

i.

I.

I.

I.

I.

i.

I.

I.

I.

I.

i.

I.

i.

0.

0.

0.

0.

0.

z (cm) layer row column

00000 -5.00000 -0.50000 0 0 0

00000 -2.50000 -0.50000 0 0 1

00000 0.00000 -0.50000 0 0 2

00000 2.50000 -0.50000 0 0 3

00000 5.00000 -0.50000 0 0 4

00000 -5.00000 -0.25000 0 1 0

00000 -2.50000 -0.25000 0 1 1

00000 0.00000 -0.25000 0 1 2

00000 2.50000 -0.25000 0 1 3

00000 5.00000 -0.25000 0 1 4

00000 -5.00000 0.00000 0 2 0

00000 -2.50000 0.00000 0 2 1

00000 0.00000 0.00000 0 2 2

00000 2.50000 0.00000 0 2 3

00000 5.00000 0.00000 0 2 4

00000 -5.00000 0.25000 0 3 0

00000 -2.50000 0.25000 0 3 1

00000 0.00000 0.25000 0 3 2

00000 2.50000 0.25000 0 3 3

00000 5.00000 0.25000 0 3 4

00000 -5.00000 0.50000 0 4 0

00000 -2.50000 0.50000 0 4 1

00000 0.00000 0.50000 0 4 2

00000 2.50000 0.50000 0 4 3

00000 5.00000 0.50000 0 4 4

90000 -5.00000 -0.50000 1 0 0

90000 -2.50000 -0.50000 1 0 1

90000 0.00000 -0.50000 1 0 2

90000 2.50000 -0.50000 1 0 3

90000 5.00000 -0.50000 1 0 4

<< Remainder of nodes truncated >>

Figure 3: Node information.
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= 0 and column = 0. For a wraparound grid, the first grid point is physically

located at ¢ = -180 ° and once again has row = 0 and column = 0.

The next set of information provided is the edges which form the cavities.

The information given is as follows (see figure 4)

* Column

• Column

• Column

• Column

• Column

• Column

1: Edge number.

2: Left (lower) node forming the edge.

3: Right (upper) node forming edge.

3: Unknown number (zero indicates a fixed edge (e.g. metal)).

4: Orientation (p-, if- or z-directed).

5: Type of edge (metal,substrate,resistive or interior).

Each edge is associated with two nodes and hence has an orientation in the

cylindrical coordinate system. If an edge is metal, since EXCALIBUR uses a

total field formulation, that edge's weight is fixed at zero. All other edges are

unknowns which must be solved using the BiCG-FFT solver. A substrate or

resistive edge is associated with the boundary integral while interior edges

contribute only to the FE portion of the system. Currently, resistive cards

are not implemented in EXCALIBUR.

The next set of information related the unknowns on the aperture of the

cavities to their edge number. It also includes the row and column number of

that edge in the discretization grid. Although this information is useful for

understanding the mechanics of the BiCG-FFT solver, it is of little interest

to the general user. The given information is (see figure 5)

• Column

• Column

• Column

• Column

1: Unknown number.

2: Associated edge number.

3: Row of this edge in the discretization.

3: Column of this edge in the discretization.

The edges which form each element of the mesh are given next. Each

cylindrical shell element consists of eight nodes which form twelve edges.

This information is useful in visualizing the mesh and could be hooked into

a graphics package to generate a 3-D picture of the mesh. The prototype

element is shown in figure 6 which displays the node numbering scheme. The

information given by convertToASCII is (see figure 7)

• Row 1, Column 1: Element number.
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Edge Node 1 Node 2

1 26 1

2 27 2

3 31 6

4 32 7

5 26 27

6 1 2

7 31 32

8 6 7

9 26 31

i0 1 6

Ii 27 32

12 2 7

13 28 3

14 33 8

15 27 28

16 2 3

17 32 33

18 7 8

19 28 33

20 3 8

21 29 4

22 34 9

23 28 29

24 3 4

25 33 34

26 8 9

27 29 34

28 4 9

29 30 5

30 35 I0

Unknown Orientation

0 rho-directed

0 rho-directed

0 rho-directed

25 rho-directed

0 phi-directed

0 phi-directed

0 phi-directed

1 phi-directed
0 z-directed

0 z-directed

0 z-directed

13 .... z-directed

0 rho-directed

26 rho-directed

0 phi-directed

0 phi-directed

0 phi-directed

phi-directed
z-directed

z-directed

rho-directed

rho-directed

phi-directed

phi-directed

phi-directed

phi-directed

z-directed

z-directed

rho-directed

rho-directed

2

0

14

0

27

0

0

0

3

0

15

0

0

<< Remaining edges truncated >>

Type

metal

metal

metal

interior

metal

metal

metal

substrate

metal

metal

metal

substrate

metal

interior

metal

metal

metal

substrate

metal

substrate

metal

interior

metal

metal

metal

substrate

metal

substrate

metal

metal

Figure 4: Edge information.
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Unknown Edge Row Column
1 8 2 1

2 18 2 3

3 26 2 5

4 34 2 7

5 40 4 1

6 47 4 3

7 52 4 5

8 57 4 7

9 63 6 1

I0 70 6 3

ii 75 6 5

12 80 6 7

13 12 1 2

14 20 1 4

15 28 1 6

16 44 3 2

17 49 3 4

18 54 3 6

19 67 5 2

20 72 5 4

21 77 5 6

22 90 7 2

23 95 7 4

24 i00 7 6

Figure 5: Relationship between unknown number and edge number on aper-
ture.
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Figure 6: Cylindrical shell element.
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• Row 1, Column 2-5: p-directed edges.

• Row 2, Column 2-5: C-directed edges.

• Row 3, Column 2-5: z-directed edges.

The final set of information provided is the element parameters as shown

in figure 6 which includes (see figure 8)

• Row 1: Element number.

• Row 2: p_, pb and t = pb -p_.

• Row 3: Ct, Cr and c_ = Cr - Ct.

• Row 3: zb, zt and h = zt - zb.

5 Geometry Generation

Having reviewed the geometry information provided by preprocessor through

convertToASCII, we are prepared to generate some example geometries.

Specifically, we shall look at radiation and scattering by a 2 cm x 3 cm

patch antenna which is placed in a 5 cm x 6 cm cavity, a four element discrete

array of such cavities and the same radiating array placed in a continuous

wraparound cavity. These three variations of the same geometry exhibit the

main classes of structures encountered in practice. Users will find it very

helpful to check the entered geometry via convertToASCII prior to running

the solver part of EXCALIBUR. In particular, it is useful to discretize the

cavity without patches present and retain the node information since it will

be necessary to specify the row and column of the lower-left corner of each

patch as well as the number of edges along each side.

EXCALIBUR has a preprocessor module which generates the required

mesh. It first generates the surface nodes which are then used to create

the 3-D mesh. An in-house modeling package, such as SDRC IDEAS, may

be used to create such a surface grid so long as the nodes are an integer

number of units apart. It would be quite easy to interface such a package

with EXCALIBUR by replacing the subroutine simpleMesh with a universal

file reader. However, we have found that the custom mesh routine provided

with EXCALIBUR (simpleMesh) is sufficient for most modeling tasks while
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Element Edges

1 1 2 3 4

5 6 7 8

9 i0 ii 12

2 2 13 4 14

15 16 17 18

II 12 19 20

3 13 21 14 22

23 24 25 26

19 20 27 28

4 21 29 22 30

31 32 33 34

27 28 35 36

5 3

7

41

4 37 38

8 39 40

42 43 44

<< Remaining elements truncated >>

Figure 7: Edges associated with each element.
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Element size parameters:

Element number:

rhoA = 0.90000

phiL = -5.00000

zB = -0.50000

Element number:

rhoA = 0.90000

phiL = -2.50000

zB = -0.50000

Element number:

rhoA = 0.90000

phiL = 0.00000

zB = -0.50000

Element number:

rhoA = 0.90000

phiL = 2.50000

zB = -0.50000

Element number:

rhoA = 0.90000

phiL = -5.00000

zB = -0.25000

1

rhoB =

phiR =
zT =

2

rhoB =

phiR =

zT =

3

rhoB =

phiR =

zT =

4

rhoB =

phiR =

zT =

1.00000 t =

-2.50000 alpha =

-0.25000 h =

1.00000 t =

0.00000 alpha =

-0.25000 h =

1.00000 t =

2.50000 alpha =

-0.25000 h =

1.00000 t =

5.00000 alpha =

-0.25000 h =

5

rhoB = 1.00000 t =

phiR = -2.50000 alpha =

zT = 0.00000 h =

0.i0000

2.5OOOO

0.25000

0.I0000

2.50000

0.25000

0.I0000

2.50000

0.25000

0.i0000

2.50000

0.25000

0.i0000

2.50000

0.25000

<< Remaining elements truncated >>

Figure 8: Element parameters.
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being quite efficient. For this manual, we will use this package for all meshing

requirements.

The first example is a 2 cm x 3 cm patch antenna recessed in a 5 cmx 6

cm cavity which is centered at (_b = 0 °, z = 0 cm). The required information

is as follows

• Enter

• Enter

• Enter

• Enter

• Enter

Choose item 1 (Preprocessor) from main menu.

radius of the cylinder in centimeters.

angular and axial size of grid in degrees and centimeters.

center of grid in degrees and centimeters.

number of grid points in azimuthal and axial directions.

number of identical cavities in the azimuthal and axial directions.

• Enter number of nodes per cavity.

• Indicate whether all surface nodes are metallic or resistive.

• Indicate whether all surface nodes are on the substrate (0 means a

patch is present).

• Enter number of patches.

• Enter row and column of lower-left hand node of tile patch (see node

section of the geometry file for this information).

• Enter number of edges in (_b,z) directions for this patch.

• Indicate any additional metallic nodes (-999 2 denotes no remaining

nodes).

• Enter number of substrate layers.

• For each layer, enter its thickness in centimeters.

• Enter 1 to save this geometry.

• Enter filename for this geometry.

The transcript for this geometry is shown on the following pages. The

next two examples are a discrete array of these elements and a continuous

wraparound array. The main difference is that the number of grid points is

not the same as the number of nodes on the cavity surface. Essentially, the

same information is entered as above with the exception that these two arrays

have a wraparound (360 °) grid. See the attached transcripts for more de-

tails. Note for continuous wraparound cavities, if a patch crosses the branch

cut (_b = :1:180°), the nodes along the lower edge of the patch must be
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hand entered as shownin example 3. Thesenodesare obtained by running

the preprocessor without specifying any patches and inspecting the human-

readable geometry file. Note that for these three examples, the number of

unknowns is dramatically different. For the single cavity of example 1, only

541 unknowns are required. The four identical discrete cavities requires 2164

unknowns which is of course 4 x 541. Finally, the continuous wraparound

cavity has 12992 unknowns!
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I}llllllllllll lllllllltlllllltllllllltllll

I I

l Example 1 I
I Single Discrete Cavity Example I

I I

lilllilllllllIllllllllllllllllllllllllllll

Do you wish to run:

i) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit

Performing initialization, please wait ....

Enter radius of cylinder (cm):

15.27887

Enter array size (phi,z) in (deg, cm):

18.75 6

Enter center of array (phi, z) in (deg, cm) :

0 0

Enter number of grid points in (phi,z) direction:
ii 25

Discretization:

deltaPhi = 1.875 deg
deltaZ - .25 cm

Enter number of cavities in phi,z directions
ii

Enter number of nodes per cavity (phi, z):
ii 25

275 surface nodes have been generated...

The node numbering has the following pattern

SINGLE CAVITY:

^

I 21 22 23 24 25

I 16 17 18 19 20

z Ii 12 13 14 15

I 6 7 8 9 I0

i I 2 3 4 5

phi .......... >

if for example 25 nodes were specified.

where node 13 is the center point.

Now specify which other nodes are either:

metallic

or

resistive

All surface nodes metal or resistive (l=yes):

0

Are the nodes substrate nodes (l=yes):

0

Enter number of metallic patches:

1

Enter row, column of lower left corner of

the patch on uniform grid for patch: 1

6 3
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Enter number of unknowns(edges) for each
dimension (phi,z) :

4 12

<< List of nodes constituting the patch deleted >>

<< Each of these nodes is specified by (phi,z) coord >>

Now enter any individual nodes...

Specify the class (metal or resistive) of all

surface nodes which are NOT substrate nodes:

Also indicate if 2 = metal or 3 = resistive...

Enter node number (-999 if done):

-999 2

0 resitive nodes entered...

66 metal nodes entered...

Enter number of substrate layers(INTEGER):
1

Generating sub-surface nodes ....

Enter layer 1 thickness (cm) :
0.07874

All 550 NODES have now been created

which form 240 elements...

Generating edges...

1303 edges generated ....

All element edges have been identified...

Classifying edges ....

Number of elements: 240

Total number of nodes: 550

Total number of edges: 1303

Number of interior edges: 207

Number of metal edges: 762

Number of aperture edges: 334

Resistive edges: 0

Substrate edges: 334

Number of unknowns: 541

Determining unknown order...

Do you want to save this geometry (l=yes) :

1

Enter EXCALIBUR filename:

examplel.exc

Writing binary EXCALIBUR file:

examplel.exc

Do you wish to run:

I) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit
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illlllllllllllllllllllllllllllllllllllll

Example 2

Four Discrete Cavities Example

lllllllllllllllllllllllllllllllIllllllll

Do you wish to run:

i) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit

Perfornting initialization, please wait ....

Enter radius of cylinder (cm):

15.27887

Enter array size (phi,z) in (deg, cm):

360 6

Wrap-around cavity entered...

Enter center of array (z) in (cm):

0

Enter number of grid points in (phi, z) direction:

192 25

Discretization:

deltaPhi - 1.875 deg

deltaZ = .25 cm

Enter 1 if ring element, 0 if rectangular array:

0

Enter number of cavities in phi direction
4

Enter number of nodes per cavity (phi, z):

II 25

Enter lower left-hand (row,column): 1

0 43

Enter lower left-hand (row, column): 2

0 91

Enter lower left-hand (row,column): 3

0 139

Enter lower left-hand (row,column): 4

0 187

1100 surface nodes have been generated...

The node numbering has the following pattern

AZMUTHAL CAVITY ARRAY:

A

I

I 19 20 21 22 23 24

z 13 14 15 16 17 18

I 7 8 9 10 ii 12

I 1 2 3 4 5 6

phi ............. >

if for example two 3x4 cavities

were specified

Now specify which other nodes are either:

metallic

or 80



resistive

All surface nodes metal or resistive (l=yes):
0
Are the nodes substrate nodes (l=yes):

0
Enter number of metallic patches:

4
Enter row,column of lower left corner of
the patch on uniform grid for patch: 1

6 46
Enter number of unknowns(edges) for each
dimension (phi,z):

4 12
<< Node list deleted >>
Enter row,column of lower left corner of
the patch on uniform grid for patch: 2

6 94
Enter number of unknowns(edges) for each
dimension (phi,z):

4 12
<< Node list deleted >>
Enter row,column of lower left corner of
the patch on uniform grid for patch: 3

6 142
Enter number of unknowns(edges) for each
dimension (phi,z):

4 12
<< Node list deleted >>
Enter row,column of lower left corner of
the patch on uniform grid for patch: 4

6 190
Enter number of unknowns(edges) for each
dimension (phi,z):

4 12
<< Node list deleted >>
Nowenter any individual nodes...
Specify the class (metal or resistive) of all
surface nodes which are NOTsubstrate nodes:
Also indicate if 2 - metal or 3 - resistive...

Enter node number (-999 if done):
-999 2

0 resitive nodes entered...
261 metal nodes entered...

Enter number of substrate layers(INTEGER):
1

Generating sub-surface nodes....
Enter layer 1 thickness (cm):

0.07874

All 2200 NODEShave now been created
which form 960 elements...

Generating edges...

5212 edges generated ....

All element edges have been identified...
81

Classifying edges ....



Numberof elements: 960

Total number of nodes: 2200

Total number of edges: 5212

Number of interior edges: 828

Number of metal edges: 3048

Number of aperture edges: 1336

Resistive edges: 0

Substrate edges: 1336
Number of unknowns: 2164

Determining unknown order...

Do you want to save this geometry (llyes):

1

Enter EXCALIBUR filename:

example2.exc

Writing binary EXCALIBUR file:

example2.exc

Do you wish to run:

I) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit

z
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IllilJlJlilJlllilllllJiiflIlltltltillill

Example 3

Four Patches on Continuous

Wraparound Cavity Example

lilJllllIIiilIIililllllllillllJlilllllll

Do you wish to run:

i) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit

Performing initialization, please wait ....

Enter radius of cylinder (cm) :

15.27887

Enter array size (phi,z) in (deg, cm) :
360 6

Wrap-around cavity entered...

Enter center of array (z) in (cm) :

0

Enter number of grid points in (phi,z) direction:

192 25

Discretization:

deltaPhi = 1.875 deg

deltaZ - .25 cm

Enter 1 if ring element, 0 if rectangular array:
1

Enter number of identical rings (>=i):

1 Enter number of nodes per cavity (phi, z):
192 25

Enter lower left-hand (row, column): 1
0 0

4800 surface nodes have been generated...

The node numbering has the following pattern

SINGLE CAVITY:

A

J 21 22 23 24 25

[ 16 17 18 19 20

z ii 12 13 14 15

I 6 7 8 9 i0

J 1 2 3 4 5

phi -->

if for example 25 nodes were specified.

where node 13 is the center point.

Now specify which other nodes are either:

metallic

or

resistive

All surface nodes metal or resistive (l=yes):
0

Are the nodes substrate nodes (l=yes):
0

Enter number of metallic patches:
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4

Enter row, column of lower left corner of

the patch on uniform grid for patch: 1
6 46

Enter number of unknowns(edges) for each

dimension (phi,z):

4 12

<< Metallic node list deleted >>

Enter row, column of lower left corner of

the patch on uniform grid for patch: 2

6 94

Enter number of unknowns (edges) for each

dimension (phi,z) :

4 12

<< Metallic node list deleted >>

Enter row,column of lower left corner of

the patch on uniform grid for patch: 3

6 142

Enter number of unknowns(edges) for each

dimension (phi, z):

4 12

<< Metallic node list deleted >>

Enter row, column of lower left corner of

the patch on uniform grid for patch: 4

6 190

Enter number of unknowns(edges) for each

dimension (phi,z):

4 12

This patch includes branch...

Enter first row nodes:

1343

1343 176.25 -1.5

1344

1344 178.1249 -1.5

1153

1153 -180.0 -1.5

1154

1154 -178.125 -1.5

1155

<< Metallic node list deleted >>

Now enter any individual nodes...

Specify the class (metal or resistive) of all

surface nodes which are NOT substrate nodes:

Also indicate if 2 = metal or 3 = resistive...

Enter node number (-999 if done):

-999 2

0 resitive nodes entered...

261 metal nodes entered...

Enter number of substrate layers(INTEGER):

1

Generating sub-surface nodes ....

Enter layer 1 thickness (cm) :

0.07874

All 9600 NODES have now been created

which form 4584 elements...

Generating edges...

23616 edges generated ....

All element edges have been identified...
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Classifying edges ....

Number of elements: 4608

Total number of nodes: 9600

Total number of edges: 23616

Number of interior edges: 4416

Number of metal edges: 10624

Number of aperture edges: 8576

Resistive edges: 0

Substrate edges: 8576

Number of unknowns: 12992

Determining unknown order...

Do you want to save this geometry (Izyes):

1

Enter EXCALIBUR filename:

example3.exc

Writing binary EXCALIBUR file:

example3.exc

Do you wish to run:

I) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit
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6 Operation Modes

EXCALIBUR has three main operation modes for FE-BI calculations (option

2 from the main menu). They are: inputimpedance vs. frequency, radiation
pattern or RCS vs. frequency and single frequency radiation and RCS pattern

calculations. This section will describe each mode using example 1 above.

6.1 Input Impedance - Multiple Frequencies

The first option presented is ca]culation of a patch antenna's input impedance

at multiple frequencies. This is most Useful in determining the resonant

frequency of a patch antenna. The following information is required

• Choose item 2 (FE-BI) from main menu.

• Enter the stored binary geometry file.

• Enter 1 if all elements have the same material parameters.

• Enter complex permittivity.

• Enter complex permeability.

• Enter BiCG convergence tolerance, minimum and maximum number
of iterations.

• Enter 1 to monitor convergence.

• Enter 1 for diagonal preconditioning and 0 for no preconditioning.

• Enter 1 for frequency sweep of the input impedance.

• Enter name of file to store the input impedance.

• Enter number of probe feeds.

• Enter location of each feed in terms of (¢=degrees, z=cm).

• Enter which layer in which the feed is embedded.

• Enter complex current for this feed.

• Enter number of impedance post loads.

• Enter frequency range (in GHz) for this sweep.

• Return to main menu.

The input impedance for 3.1 GHz to 3.3 GHz computed every 10 MHz is

shown in figure 9. The transcript for computing the input impedance of an

axially polarized 2 cm × 3 cm patch in a 5 cm × 6 cm cavity is given on the

following page.
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Do you wish to run:

i) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit

Performing initialization, please wait ....

Enter EXCALIBUR filename:

examplel.exc

Reading excalibur file: examplel.exc

Material Parameter Specification ....

Is the material filling constant (l=yes, 0=no)?

1

Enter relative permittivity [real, imaginary] :

2.17 0

Enter relative permeability [real,imaginary] :

1 0

Checking dimension allocations...

Number of Boundary Integral Unknowns: 334

Total number of UNKNOWNS: 541

Enter tolerance, minimum and maximum iterations:

0.01 2 500

Do you wish to monitor convergence (0=no,l-yes)?

0

Do you want: 0 = no preconditioning, 1 = diagonal?

1

Do you want to compute:

0 - RCS/Pattern, 1 z Zin, 2 = Freq. Sweep?

1

Enter Zin filename:

examplel.zin

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
J PROBE FEED INFORMATION J

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Enter number of feeds:

1

Enter feed location (phi,z) in (deg, cm):

0 -0.375

Enter layer number of feed <=: 1

1

Enter mag, phase of probe current (amp, deg):

1 0

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

J IMPEDANCE LOAD INFORMATION J

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Enter number of loads:

0

Enter start,stop and increment freq.

3.1 3.3 0.01

<< Data shown in attached figure >>

(GHz) :
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6.2 Pattern - Multiple Frequencies

The next option presented is calculation of a radiation or RCS pattern at

multiple frequencies. This is useful in computing the variation of gain or

RCS with respect to frequency. Usually, a single observation angle is spec-

ified although multiple angles are allowed. This mode permits radiation,

bistatic and backscatter computations. In addition, the input impedance as

a function of frequency is stored if a probe feed is used for excitation. In this

example, we compute the backscatter at normal incidence for an E.-poiarized

plane wave as a function of frequency. The required information is

• Choose item 2 (FE-BI) from main menu.

• Enter the stored binary geometry file.

• Enter 1 if all elements have the same material parameters.

• Enter complex permittivity.

• Enter complex permeability.

• Enter BICG convergence tolerance, minimum and maximum number
of iterations.

• Enter 1 to monitor convergence.

• Enter 1 for diagonal preconditioning and 0 for no preconditioning.

• Enter 2 for frequency sweep of the far-zone fields.

• Enter name of file to store the input impedance.

• Enter name of file to store the RCS or Gain.

• Enter observation type (0 = backscatter).

• Enter start, stop and increment azimuth (¢) angles (in degrees).

• Enter start, stop and increment elevation (0) angles (in degrees).

• Enter polarization angle (0 = E-pol, 90 = H-pol).

• Enter RCS filename.

• Enter number of probe feeds.

• Enter number of impedance post loads.

• Enter frequency range (in GHz) for this sweep.

• Return to main menu.

The RCS for 3.1 GHz to 3.3 GHz computed every 10 MHz is shown in figure

10. The transcript for backscatter calculations for backscatter calculations

is shown on the next page.
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Do you wish to run:

i) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit

2

Performing initialization, please wait ....

Enter EXCALIBUR filename:

examplel.exc

Reading excalibur file: examplel.exc

Material Parameter Specification ....

Is the material filling constant (llyes, 0=no)?

1

Enter relative permittivity [real,imaginary]:

2.17 0

Enter relative permeability [real, imaginary] :
I 0

Checking dimension allocations...

Number of Boundary Integral Unknowns: 334

Total number of UNKNOWNS: 541

Enter tolerance, minimum and maximum iterations:

0.01 2 500

Do you wish to monitor convergence (0=no, l-yes)?
0

Do you want: 0 = no preconditioning, 1 = diagonal?
1

Do you want to compute:

0 = RCS/Pattern, 1 = Zin, 2 -- Freq. Sweep?
2

Enter Zin filename:

test. zin

Enter Frequency sweep data filename:

examplel, fsw

Enter observation type:

0) Backscatter

i) Bistatic

2) Radiation

0

Enter start,stop, and increment azmuth angles [deg]:
0 0 1

Enter start, stop, and increment elevation angles [deg]:
9O 90 1

Enter polarization angle [0 <z alpha <-- 90 deg]:

Ephi=0: alpha = 0

Etheta=0: alpha = 90

0

Enter ouput RCS filename [<= 40 characters]:

junk

IIIIII
I
IIIIII

IIIIIIIIII
PROBE FEED

IIIIIIIII

IIIIIIII IIIIIIIIIIIIIII
INFORMATION l

IIIIIIIIIIIIIIIIIIII]III

Enter number of

0

IIIIIIIIIIIIIII
l IMPEDANCE

IIIIIIIIIIIIIII

feeds:

IIIIIIIIIIIIIIIIIIIIIIII
LOAD INFORMATION I

IIIIIIIIIIIIIIIIIIIIIIII

Enter number of loads:

0

Enter start,stop and increment

3.1 3.3 0.01

f req. (GHz) :
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6.3 Pattern - Single Frequency

The final operation mode is radiation and RCS pattern calculations at a

single frequency. Of course, for the case of an antenna, the input impedance

is also computed. This mode is generally used for multiple incident and

observation angle applications. The only difference between this mode and

the previous two modes is the option to save the admittance matrix in binary

format. Since this matrix is excitation independent (though still frequency

dependent), it can savetime for multlpierunso_ a large geometry if this

matrix is stored and then read in for each run. The required inputs are

• Choose item 2 (FE-BI) from main menu.

• Enter the stored binary geometry file.

• Enter 1 if all elements have the same material parameters.

• Enter complex permittivity. :

• Enter complex permeability.

• Enter BiCG convergence tolerance, minimum and maximum number

of iterations.

• 1 to monitor convergence.

• 1 for diagonal preconditioning and 0 for no preconditioning.

• 0 for single frequency operation: ....

• matrix storage/read option( 1 to store, 2 to read, 0 to do noth-

• six (6) character filename for matrix storage/read.

• observation type (1 = bistatic).

• incidence angle (¢,0).

• start, stop and increment azimuth (¢) angles (in degrees).

• start, stop and increment elevation (0) angles (in degrees).

• polarization angle (0 = E-pol, 90 = H-pol).

• RCS filename.

• number of probe feeds.

• number of impedance post loads.

• Enter frequency (in GHz).

• Return to main menu.

This option is illustrated in the next session transcript for bistatic scattering

and radiation pattern calculations.

Enter

Enter

Enter

Enter

ing).

Enter

Enter

Enter

Enter

Enter

Enter

Enter

Enter

Enter
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Do you wish to run:

i) Preprocessor

2 ) FEM-BI

3) Impedance aperture

0 ) Exit

2

Performing initialization, please wait ....

Enter EXCALIBUR filename:

examplel, exc

Reading excalibur file: examplel.exc

Material Parameter Specification ....

Is the material filling constant (l=yes,0=no)?

1

Enter relative permittivity [real, imaginary] :

2.17 0

Enter relative permeability [real, imaginary] :

1 0

Checking dimension allocations...

Number of Boundary Integral Unknowns: 334

Total number of UNKNOWNS: 541

Enter tolerance, minimum and maximum iterations:

0.01 2 500

Do you wish to monitor convergence (0=no, l-yes)?

0

Do you want: 0 = no preconditioning, 1 = diagonal?

1

Do you want to compute:
0 = RCS/Pattern, 1 = Zin, 2 = Freq. Sweep?

0

Save the BI arrays in a file (0=no, l--yes,2=read)?

1

All BI files will have the following form:

<filename>. guu, <filename>. guv, etc.

Enter BI binary filename(must be six(6) char):

exampl

Enter observation type:

0) Backscatter

i) Bistatic

2) Radiation

Enter incident phi,theta [deg]:

0 9O

Enter start,stop, and increment azmuth angles [deg]:

-180 180 1

Enter start,stop, and increment elevation angles [deg]:

90 90 1

Enter polarization angle [0 <= alpha <= 90 deg]:

Ephi=0: alpha = 0

Etheta=0: alpha = 90

0

Enter ouput RCS filename [<= 40 characters]:

exampl, bi

Enter frequency (GHz) :

3.3

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

I PROBE FEED INFORMATION I

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Enter number of feeds:

1

Enter feed location (phi,z) in (deg, cm):

0 -0.375

Enter layer number of feed <--: 1

1

Enter mag,phase of probe current (amp, deg) :

1 0
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JllflflfllllllllllIillllItlllJlllJllllIi
I IMPEDANCELOADINFORMATION i

lllilllilililllllllllllfllllllllililllll

Enter number of loads:

0

Writing BI binary files...

Generate bistatic excitation vector...

Solve it...

<< Pattern deleted. >>

Run anouther excitation? (l=yes, 0=no)

I

Enter observation type:

2

Enter start,stop,

-180 180 1

0) Backscatter

i) Bistatic

2) Radiation

and increment azmuth angles

Enter start,stop, and increment elevation angles

90 90 1

Enter ouput RCS filename [<= 40 characters]:

exampl.pat

Enter normalized pattern filename:

exampl.norm

Solve it...

<< Pattern deleted. >>

Run anouther excitation? (l=yes, 0=no)

0

[deg]:

[deg]:

Do you wish to run:

i) Preprocessor

2) FEM-BI

3) Impedance aperture

0) Exit
L
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The bistatic patterns taken at 3.3 GHz for the three geometry configu-

rations presented in this manual are shown in figure 11 Tlle corresponding

antenna pattern comparisonat 3.3 GHz is shown in figure 12

7 Concluding Remarks

This user manual presented some basic operation information for the FE-

BI code, EXCALIBUR. This presentation was only meant to get an initial

user started. As one becomes experienced with the code, additional features

such as 2-D patch array modeling, multiple feed arrays and use of lumped

impedance loads may prove useful. Indeed, an experienced user will find

that custom features may readily be added to EXCALIBUR. For example,

currently EXCALIBUR allows entry of material parameters either for the

entire substrate, each layer of the substrate or on an element-by-element

basis. This subroutine material in file excalibur.f may readily be modified by

the user to input a custom inhomogeneous substrate.

The code is fairly "dummy proof". If the user enters data which is not

expected by EXCALIBUR such as a character when an integer is expected or

an angle greater than 360 °, the code will prompt the user to re-enter the re-

quested data. Additionally, the storage allocation parameters in ezcalibur.inc

must be set by the user prior to compilation. If a particular parameter is

too small for a given run, the code will halt and suggest a new value for the

offensive parameter. The user must reset that parameter, recompile and run

the code again. The program also estimates the amount of RAM required

at the start of a run. This estimate is based on the storage required by the

arrays in excalibur.inc plus some scratch arrays. Each complex number is

assumed to require eight bytes and each integer and real number require four

bytes. The user should consider this estimate to be a slightly lower than the

actual consumed memory.
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Figure 9: Input impedance vs. frequency for the axially polarized patch

antenna which is 2 cm x 3 cm in a 5 cm x 6 cm cavity.
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Figure 11: E-polarized bistatic patterns for a 2 cm x 3 cm embedded in the

three different geometries presented in this manual. The incidence angle is

(0 °, 90 °) and observation is in the 0 = 90 o plane.

97



20.0

o_

10.0

-10.0

-20.0

Example 1

......... Example 2

Example 3

Angle (_) [deg]

Figure 12: Axially polarized H-plane patterns for a 2 cm × 3 cm embedded

in the three different geometries presented in this manual.
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APPENDIX 1

A .NOTE ON APPLYING .NEW VECTOR ABCs TO

ANTENNAS ON A CIRCULAR CYLINDER

PATCH

Leo C. Kempel and John L. Volakis

Radiation Laboratory

Department of Electrical Engineering and Computer Science

University of Michigan, Ann Arbor, Mr 48109-2122

Recently, we developed a Finite Element-Boundary Integral (FE-BI) method which

may be used to accurately model the scattering and radiation by conformal patch

antennas. The use of a boundary integral to provide an exact mesh closure condition

results in a rigorous formulation. When coupled with a Biconjugate Gradient-Fast

Fourier Transform (BiCG-FFT) solver, the resulting computer code possesses both

low memory and low computational demand. However, boundary integral closure

involves a dyadic Green's function which necessarily limits its extension to coated

geometries. Although it is possible to construct a suitable Green's function for mul-

tilayered superstrates, the resulting formulation is both complex and bulky. Fur-

thermore, this approach cannot be extended in a rigorous manner to more general

doubly curved structures.

Another hybrid FE method which has been used for very large 3-D scattering

calculations at the University of Michigan is the finite element-absorbing boundary

condition (FE-ABC) method. ABCs provide an approximate mesh closure which

maintains a highly sparse matrix for the whole system. We propose utilizing a

new conformal ABC (A. Chatterjee and J.L. Volakis, Microwave and Optical Tech.

Letters, 6, No. 16, pp. 886-889, Dec. 20 1993) which allows the closure surface to

be brought quite close to the cavity aperture. As a result, the number of unknowns

required is significantly less than the number required if a traditional spherical

closure surface/boundary condition is used.

We have applied the second order ABC to radiation and scattering by cavity-

backed patch antennas which are embedded in a metallic cylinder. Although ex-

tensive testing has not as of yet been accomplished, the preliminary results are

encouraging. We looked at a 2 cm x 3 cm patch antenna which was printed on a

5 cm x 6 cm x 0.07874 cm substrate which had a dielectric constant of er = 2.17.

The second order ABC was place 0.5,_ from the cavity aperture as shown in figure

1. Two comparisons with the FE-BI formulation were performed. The first involved

bistatic scattering with normal incidence (¢i = 0°,0i = 90 °) and observation in the

9 = 90 ° plane for an E_-polarized plane wave which is shown in figure 2. A radiation

pattern for the same antenna is shown in figure 3 where the resonant frequency is

3.3 GHz. Since this is an axially polarized element, figure 3 is an H-plane pattern.

The scattering and radiation example given herein involves a conformal antenna

element without a covering superstrate. The FE-ABC formulation may be readily

modified to account for such a covering which may consist of multiple inhomogeneous

layers as shown in figure 1. A future report will develop the formulation for both

covered and uncovered elements and it will provide suitable validation of the method.
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In addition,weshallinvestigatewhethertile near-fieldperformanceof the FF.-ABC
methodis sufficientfor input and mutual impedancecalculations, tlaving shown

that the FE-ABC approach can indeed be used for conformal antennas on singly

curved surfaces, we may in confidence develop a similar formulation for antennas

mounted on doubly curved surfaces.

............ Sabc

o - ° " Patches Region I _ _.

,_ ......... _ _ ..........."_ ..,e'"':"" . " • " . " " • " • ' • " • " • " • " • " • " • " .'*"2""': .... t . .
Composite skin _ ...... :'"'. ............ "': ..... i Composite skin

\ _ .f'"' " "_R_00_ ,_,,,_" : :_'.'.'.'.'.'.'." ........ ' /

Figure 1: Coated cavity-backed patch antenna with ABC mesh termination. =
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Figure 2: Comparison of 2 nd order conformal ABC mesh closure condition

with the exact boundary integral condition for bistatic scattering. The patch

was 2 cm × 3 cm printed on a 5 cm x 6 cmx 0.07874 cm dielectric substrate

(or = 2.17). The ABC was placed 0.5A from the aperture and the operating

frequency was 3.0 GHz. The E_-polarized plane wave was incident from (¢; =

0°,0i = 90 °) and observation is in the 0 = 90 ° plane.

10.0

0.0

i -10.0

-20.0
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• , .... l , , , , , I ..... I ..... I ..... I ..... -'

- 120.0 -60.0 0.0 60.0 120.0 180.0

Angle (¢) [deg]

Figure 3: Comparison of 2 nd order conformal ABC mesh closure condition

with the exact boundary integral condition for antenna pattern calculations.

The geometry is identical to the one used in figure 2. The operating frequency

was 3.3 GHz. The feed point was (¢8 = O°,z8 = -0.375 cm) which results in

axial polarization and observation is made in the H-plane.
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APPENDIX 2

FE-BI implementation for coated planar platforms

Consider the cavity recessed in a coated ground plane as shown in Fig 1. Tile

coating is assumed to be of thickness d and of relative permittivity _. \Ve

will denote the free space region above the coating (z > d) as region l, the

region inside the coating (0 < z < d) as region 2 and that inside the cavity

(-c < z < 0) as region 3. We will assume that the cavity is filled with

an inhomogeneous material having a relative permittivity e_c(r) and relative

permeability #,c(r). In accordance with thc equivalence principle, the fields

in regions 2 and 3 can be decoupted by closing the aperture with a perfect

conductor and introduce the equivalent magnetic current

M=Ex_ (1)

over the extent of the aperture, where E is the electric field at the aperture (z =

0). The magnetic field is then due to the radiation caused by the equivalent

current M residing on the ground plane and is given by

[ ] ]

H(r) - H'(r)+Hr(r)-jkY[i+-_2VVJ .F (2)

where F is the magnetic vector potential and is given in terms of the dyadic

Green's function of the coating as

F ---/Is G(r, r')- M(F)dS' (3)

and H i is the incident field, H" is that reflected by the coated ground plane

without the aperture, S denotes the planar surface area of the aperture. If

the conducting surfaces are restricted to horizontal planes, as is the situation

here, we can find an equivalent scalar Green's function Gv such that [1]

t I

V-G = V Gv(r,r) (4)

where

av = k_kx Oz jk_e, (5)

=
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More specifically, the function P defined in [2] is identically zer_J. Now consider

Fsas

Fs = -jkY[i+_TVV]'F (6)

Making use of (4) in (6) we can write Fs as

Fs= -jkV/fs _" M(r')dS' + -_-V f/s V'-M(r')Gv(r, r')dS' (7)

The required components of the Green's function in (7) are given by

dxx e -jk2 (z-d) ejk_ (z-x') eJk, (y-v ') dk_: dk_ (8)G._=/_'_f_ "°
CO oo

c .=FF
O0 O0

¢O 11_

where

dy x e -jk2 (z-d) ejk,, (_-_') ejk, (_- y') dk_ dk u

(_ e-Jk2(z-d) eJk=(_-'_') eik_(_-¢) dk dk
YY _ y

CT_e -ik_ (,-d) eik=(_,-_:,) eik_(y-¢) dk_dk_

a'.== (_k0_k_r,- k_k_r_)/ (S,_'k0_k,Z_)

with rl and F1 given by

Also,

rl .--
e,-k2 sin(k,d) - jk, cos(k,d)

e, k2 cos(k,d) + jk, sin(k,d)

I_2
k__os(k,d) + j k, s_,,(k,d)
k2 sin(k, d) - j k, cos(k, d)

FSG=_ = G{ eJl'=O'-x') e#",(_-¢) dk db
O0 O0

(9)

(lO)

(11)

(12)

(13)

(14)

(15)

(16)

(17)
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with

where

and

where

/__ /_c r-'tt _2hr(:r-s" )_3kv(y-y )..IL ,-tl,
Gtt .....

_._ cx3

dr. _ [Cco_(<_-)+Dsin(_-,_)]
4_-2

6' = k_ [k_ cos(k_d) + jerk2 sin(k,d)]

k, [,rk_cos(k,d)+ jk, sin(k,d)]

D jk_
kl

47r2 [E sin(k,z) + r cos(k,z)]

k_ [kl sin(kad) - jk2 cos(kld)]
E=

koZo [kl cos(kad) + jk2 sin(kid)]

k_

koZo

with k_ = _ko_- _2, k_ = ko_ - _ and Z2 = k_ + k_.
becomes

Fs = -jkY //sM(r) "f/s _" M(r')dS dS'

+_-/fsV'M(r)/fs

(18)

(19)

(20)

(21)

(22)

(23)

(24)

After weighting (7)

V'. M(r')Gv(r,r')dS dS' (25)

The fields in region 3 (the cavity region) are formulated employing the finite

element method [3].

Evaluation of the Sommerfeld integrals using the Chebyshev de-

composition method

This is a new, fast and efficient method [4] of evaluating Sommerfeld integrals

encountered, when we use a spectral-domain transformation to calculate fields

of a dipole source in a homogeneous space or in a layered medium with planar

boundaries. The integration is based on the decomposition of the integrand

into Chebyshev polynomials, the oscillatory nature of which facilitates rapid
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integration of the fast oscillating integrands. In (8)-(18) we encounter F{,urior

transform pairs given by

/OO . .f(k=,ky) = _ /_ f(x,y)e "'k'_-'k_- dxdy

a f_f(x'Y)=-27 /-oo

Introducing the Bessel function as

f(k_, ku)e jk*':+'ik_y dk.dk_

1 fo 2'_ ejk_o_o.{,__¢)d¢ao(k_p)= G

(2_;)

(27)

(28)

we have

£](kp) = Jo(kpp)f(p)pdp (29)

/7f p = Jo(kpp)](ko)kpdk o (30)

(29) and (30) is the Fourier-Bessel or Hankel integral transform pair. Inverse

Hankel tranforms such as (30) are the generic form of Sommerfeld integrals
which we consider for the demonstration of this method. Transverse derivatives

of f(p) can be expressed as :

Of
- cos ¢ f0 °° J_ (k,p) f( ko)k 2,dk, {31)

Hence the most general Sommerfeld integral is written as

£SI = J,,,(k,p)h(kp) dkp (32)

where J,_ is the Bessel function of the first kind of order m. Assuming that

h(ko) has a pole at k, = kp (0 < kp < V"_ko)

SI = [4r;_
Jo (J=(kap)h(ka)- F(ka) ) dk,

[_+ F(kp) dk o
dO

L+ a=(k,p)h(k,)dk, (33)
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with
,4

F(k,) =
k. - kp

where A is the residue of Jm(kpp)h(k,) at k, = kp. The second integral in (33)

is solved analytically. Next we make the behaviour of tile integrands in (33)

smoother by applying a change of variables, for the first and third integrands

respectively

kp = ver/-_rk0sin _ (35)

and

k.=v/ -&ocosh (36)

Transforming the domain of integration to the domain of definition of tim

Chebyshev polynomials the first integral of (33) becomes

with

(37)

f_a(z) = Re, Ira ((Jm(kpp)h(kp) - F(kp)):- k_ lx/-f--L-7-z 2) (38)

Similarly transforming the domain of integration for the third integral in (33)

and truncating the upper limit at a and b for the real and imaginary parts

respectively we have

a ' f3(z,)f__s(z2)dz . b ' f4(za)f6(zs) dz3 (40)

(41)

with

f3,,(z)

fs,dz)= Re, Im(h(v:Ckocosh( (z+l)))) (42)
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Now fl(z) to Jdz) arc fiited with Chehyshov polynomials so that

I(--) -

with

2 N

cj = --_ _-_ f(zk )Tj-l(Zk)
k=l

The orthogonal property of these polynomials is defined as

1 x/1-z = 7 (i=j¢0)
r (i=j =0)

Applying the orthogonal property we evaluate the SI as

7r_" 7r(a b )SI ,._ 2 4 (el,1 + jc2,1) -[- _ _f(c3, cs) + j-_f(c4,c-.6)

+A In
\ kp ) - jrA

with
,_i,,( N,,N j )- I

(43)

k=O

(44)

(45)

(46)

f(_,cj) = _ (2- _(k))2 c_,_+1 cj,k+l (47)

Using the Chebyshev decomposition method, a typical Sommerfeld integral

encountered while analysing a horizontal electric dipole in the x direction

above a ground with relative pemittivity e, and conductivity a, is evaluated.

The integral is expressed as

oo ( e-_ol:+nl _
A_ = 2 _o Jo(koP) k Uo + U ] k'dkp (48)

where

(49)

(50)u=_/k_-N 2k 2 N 2=e.-j _r
w_ 0

and k is the free space propagation constant. For this evaluation z (the ob-

server height) to be equal to the dipole height h (_/50). The results of this

evaluation is shown in Fig 2.
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Figure 1: Geometry of a groove in a coated plane
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Variation of the Sommerfeld potential A× of a HED
5.00 .... i .... i .... I .... i .... i .... I .... I ....

4.00

l.OO:
B Annaert[AP '931

A SDP
,._l .... l .... I .... I ....

10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00

3.00

< 2.00

.000E+00

.00

02

Figure 2: A typical Sommerfeld integral evaluation
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